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Abstract. In this paper, we focus on the application of Ultra Wide
Band (UWB) technology to the problem of locating static nodes in three-
dimensional indoor environments, assuming to know the positions of
a few nodes, denoted as “beacons.” The localization algorithms which
are considered throughout the paper are based on the Time Of Arrival
(TOA) of signals traveling between pairs of nodes. In particular, we pro-
pose to apply the Particle Swarm Optimization (PSO) algorithm to solve
the localization problem and we compare its performance with that of
the Two-Stage Maximum-Likelihood (TSML) algorithm. Simulation re-
sults show that the former allows achieving accurate position estimates
even in scenarios where, because of ill-conditioning problems associated
with the network topology, TSML fails.

Keywords: Wireless Sensor Networks, Localization, Time Of Arrival
(TOA), Maximum-Likelihood, Particle Swarm Optimization

1 Introduction

In the last years, the interest on Wireless Sensor Networks (WSNs) has become
more and more evident, as they promise to be a scalable and low-cost technology
which can be used to solve many practical challenges. They consist of a number
of wirelessly connected nodes, each of which has one or more sensors to measure
some physical quantities such as temperature, pressure, acceleration, etc. Typical
applications of WSNs include home security, military surveillance, environmental
monitoring, assistance for old people and patients in hospitals, and industrial
process control [1].

Among the wide variety of fields in which WSNs are involved, in this paper
we focus on accurate target localization, through wireless communications, in
indoor environments. This is a challenging and, at the same time, very inter-
esting problem: the use of WSNs is an attractive option to address it, as they
combine low-to-medium rate communications and low power consumption with
positioning capabilities. As a matter of fact, it is possible to estimate the dis-
tances between pairs of nodes by extracting some physical quantities—such as



the Time Of Flight (TOF), the Received Signal Strength (RSS), or the Angle
Of Arrival (AOA), from the signals travelling between them.

Many localization estimate techniques have been proposed in the literature,
such as: iterative methods based on Taylor series expansion [2] or the steepest-
descent algorithm [3], which guarantee fast convergence only for an initial es-
timate value close to the true solution (often difficult to obtain in real appli-
cations); closed-form methods, such as the Circumference Intersection (CI) al-
gorithms [4], the Plane Intersection (PI) algorithm [5] [6], and the Two-Stage
Maximum-Likelihood (TSML) algorithm [7] [8]. These “geometrical” methods
typically involve linear or non-linear systems of equations, which can become
ill-conditioned (for instance, if the considered beacons lay on the same line or
plane) and, thus, lead to wrong position estimates. In [9] [10], it is shown that
the initial system of equations of the TSML algorithm can be reformulated in
terms of an optimization problem and solved through the use of Particle Swarm
Optimization (PSO). Even if the TSML algorithm is particuarly interesting, as
it can attain the Cramer-Rao lower bound [11], in [9] [10] the PSO algorithm is
shown to outperform the TSML algorithm. In [12], the use of the PSO algorithm
is investigated to estimate the positions, with the use of a few “beacons” and
considering Time Difference Of Arrival (TDOA) approaches, of nodes laying on
a plane. We remark that the use of the PSO algorithm for localization purposes
is not novel [13].

In this paper, we extend [12] by considering three dimensional node position
estimation. In order to keep the derivation more tractable, we investigate Time
Of Arrival (TOA) localization strategies. In particular, under the assumption
of knowing the positions of a few nodes, denoted as beacons, the positions of
other nodes, placed in three dimensional scenarios, are estimated. As already ob-
served in two-dimensional scenarios, the PSO algorithm outperforms the TSML
algorithm. The impact of the swarm size on the performance of the PSO-based
localization strategy is investigated.

This paper is organized as follows. In Section 2, the considered scenario is
described. In Section 3, the considered localization algorithms are described.
In Section 4, the simulation-based performance results are presented. Section 5
concludes the paper.

2 Scenario

Assume to have M beacons and denote their coordinates are si = [xi, yi, zi]
T , ∀i ∈

{1, . . . , M}—we remark that the condition M ≥ 4 needs to be satisfied in or-
der to apply the localization algorithms described later. We indicate as Ki the
square of the Euclidean norm of the vector which identifies the position of the
i−th node, namely:

Ki = x2
i + y2

i + z2
i i ∈ {1, . . . , M}. (1)

We denote as u = [x, y, z]T the true position, unknown and to be estimated, of
a generic node and as û = [x̂, ŷ, ẑ]T its estimated position. Then, the true and



estimated distances between the i−th beacon (i ∈ {1, . . . , M}) and the currently
considered node are, respectively:

ri =
√

(u − si)
T (u − si) r̂i =

√

(û − si)
T (û − si). (2)

In order to provide a statistical model for the errors on the estimated dis-
tance, the wireless communication protocol comes into the picture. Since we
consider indoor environments, where the main sources of errors are non-line-of-
sight propagation, multipath, and multiple access interference, we propose to use
Ultra Wide Band (UWB) signaling, which can theoretically reduce the impact
of these phenomena. As a matter of fact, UWB signals’ large bandwidth allows
penetrating through obstacles and resolving multipath components. Moreover,
the high time resolution typical of UWB signals improves the ranging capability
[14]. According to [15], the estimated distances can be modeled as

r̂i ≃ ri + νi i ∈ {1, . . . , M} (3)

where:
νi = εi + b

εi ∼ N (0, σ2
i ); εi is independent from εj if i 6= j, j ∈ {1, . . . , M}; and b is a

synchronization bias. Moreover, the standard deviation σi of the position error
estimate between two UWB nodes can be approximated as a linear function of
the distance between them, namely σi ≃ σ0ri + β. In the following, the values
σ0 = 0.01 m and β = 0.08 m are considered. These values are obtained in [15] by
considering Channel Model 3 described in [16] and the energy detection receiver
presented in [17], which is composed by a band-pass filter followed by a square-
law device and an integrator, with integration interval set to Ts = 1 s. The results
presented in the following hold under these channel and receiver assumptions.

3 Localization Algorithms

In this section, we first describe the TOA-based TSML algorithm. Then, we
formulate the PSO algorithm applied to the minimization problem obtained by
properly reinterpreting the TOA equations of the TSML algorithm.

3.1 Two-Stage Maximum-Likelihood Algorithm

Each measurement of the distance between a given beacon and a node provides
the equation of the circumference, centered at the beacon, on which the node
may lay. Therefore, considering all measurements of the distances between the
node of interest and the beacons, the following quadratic system can be obtained:











(x − x1)
2 + (y − y1)

2 + (z − z1)
2 = r̂2

1

. . .

(x − xM )2 + (y − yM )2 + (z − zM )2 = r̂2
M .

(4)



Defining a new variable as n̂ , ||û||2 (where || · || is the Euclidean norm), the
system (4) can be written in matrix notation as

Gŵ = ĥ (5)

where

G , −2
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xM yM zM −0.5
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ẑ

n̂









ĥ ,











r̂2
1 − K1

r̂2
2 − K2

...
r̂2
M − KM











. (6)

The solution of (5) can be found in two steps and we refer the interested reader
to [8] for all details. The idea behind the solution is that (5) can be interpreted
as a linear system (which is not the case since n̂ = x̂2 + ŷ2 + ẑ2, i.e., the last
component of the solution vector depends on the first three ones) and, then, be
solved by using a Maximum Likelihood (ML) appraoch, obtaining [8]:

ŵ = (GT Ψ−1G)−1GT Ψ−1ĥ (7)

where Ψ , 4B Q B, B = diag(r1, . . . , rM ), and Q = diag(σ2
1 , . . . , σ2

M ).

Then, in order to take into account the fact that the elements of ŵ are not
independent, a second step is necessary, and corresponds to solving the following
system:

G′ ŵ′ = ĥ
′

where

G′
,









1 0 0
0 1 0
0 0 1
1 1 1









ĥ
′

,









ŵ2
1

ŵ2
2

ŵ2
3

ŵ4









ŵ′
,









x̂2

ŷ2

ẑ2









.

The ML estimate of ŵ′ ca be finally written as [8]

ŵ′ = (GT Φ−1G)−1GT Φ−1ĥ′ (8)

where Φ , 4B′(GT Ψ−1G)−1B′ and B′
, diag(ŵ1, ŵ2, ŵ3, 0.5). Finally, the posi-

tion estimate is found to be [8]

û = U

[

√

ŵ′

1,

√

ŵ′

2,

√

ŵ′

3

]T

where U = diag(sgn(ŵ)).

3.2 Particle Swarm Optimization

The system (4) can be written, in matrix notation, as

I1û
T û + A û = k̂ (9)



where: I1 is a M×1 vector with all elements equal to 1; A is a M×3 matrix whose
columns are the first three columns of the matrix G in (5); and the i−th element

of k̂ is r̂2
i −Ki. Instead of solving the quadratic system (9), we re-interpret it as

the following minimization problem:

û = argminuF (u) (10)

where F (u) is the fitness function defined as follows:

F (u) , ||k̂ − (I1û
T û + A û)||.

The PSO algorithm, introduced in [18], is an iterative method which can be
used to solve optimization problems such as the one in (10). The set of potential
solutions of the considered problem is modeled as a swarm of S particles. At
any given instant t, each particle i ∈ {1, . . . , S} in the swarm, is associated
with a position x(i)(t) in the region of interest and with a velocity v(i)(t), which
are both randomly initialized, at the beginning, with values x(i)(0) and v(i)(0).
The particles are “guided” towards the optimal solution. In fact, the updating
rules for the position and the velocity of each particle are meant to simulate
“social” interactions between individuals [19]. More precisely, according to the
most general formulation of the PSO algorithm, the velocity of particle i is
updated, at each iteration, according to the following rule [20]:

v(i)(t + 1) = ω(t)v(i)(t) + c1R1(t)(y
(i)(t) − x(i)(t))

+ c2R2(t)(y(t) − x(i)(t)) i ∈ {1, . . . , S}
(11)

where: ω(t) is denoted as inertial factor ; c1 and c2 are positive real parameters
denoted as cognition and social parameters, respectively; and R1(t) and R2(t)
are random variables uniformly distributed in (0, 1). Finally, y(i)(t) and y(t) are
the positions of the i−th particle with the best fitness function and the position
of the particle with the best (among all particles) fitness function reached until
instant t [19].

The idea behind the updating rule (11) for the velocities is to add to the previ-
ous velocity of each particle in the swarm (weighted by means of a multiplicative
factor ω(t)) a stochastic combination of the direction to its best position (cor-
responding to the second addend in (11)) and to the global best position (third
addend in (11)). The position of each particle is then updated at each step by
adding to the previous position the velocity obtained according to (11):

x(i)(t + 1) = x(i)(t) + v(i)(t) i ∈ {1, . . . , S}. (12)

Possible stopping conditions for the PSO algorithm can be the achievement
of a sufficiently low value of the fitness function or a given (maximum) number
of iterations. At the end of the algorithm, the solution is the position of the
particle which best suits the optimization requirements in the last iteration.

In the simulation-based performance analysis in Section 4, the stopping con-
dition will be the reach of 50 iterations. The population size S is set, in most of
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Fig. 1. The beacons (red squares) and the nodes with unknown positions (blue dots)
are shown in a (three-dimensional) cubic region.

the presented results, to 200 and the position of each particle is randomly ini-
tialized in the three dimensional cube region, with side equal to 10 m where the
nodes are placed—this is the natural choice under the assumption of unknown
node’s positions. Finally, the parameters c1 and c2 in (11) are both set to 2, so
that the weights for social and cognition parts to are, on average, equal to 1 and
the inertial factor is ω(t) = 0.5 − 0.01t (i.e., it starts from 0.5 when t = 0 and
decreases to 0 in the last iteration, i.e., when t = 50).

4 Simulation-based Performance Analysis

In this section, we compare, through simulations, the performances of the two
localization algorithms described in Section 3. Both TSML and PSO algorithms
are implemented in a Matlab simulator. First, we consider the node configu-
ration shown in Fig. 1, where the nodes are placed on regular spatial grid
such that the coordinates of a generic point can be expressed as (xk, yk, zk),
k ∈ {1, . . . , 36} with: xk ∈ {1 m, 5 m, 9 m}, yk ∈ {0.5 m, 3.5 m, 6.5 m, 9.5 m},
and zk ∈ {0.5 m, 5 m, 9.5 m}. In Fig. 1, the four vertices in the bottom plane
are the positions where beacons are placed. Then, we consider the node configu-
ration in Fig. 2, where the positions of the 36 nodes are obtained by “perturbat-
ing” the positions of the nodes in Fig. 1. More precisely, the coordinates of the

nodes can be expressed as: (Xk, Yk, Zk), k ∈ {1, . . . , 36}, where Xk = xk + θ
(x)
k ,
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Fig. 2. The beacons (red squares) and the nodes with unknown positions (blue dots)
are shown in a (three-dimensional) cubic region.

Yk = yk + θ
(y)
k , and Zk = zk + θ

(z)
k , with θ

(x)
k , θ

(y)
k , θ

(z)
k ∼ N (0 m, 1 m) an

independent of each other.

For each node whose position needs to be estimated, we assume to make
100 independent estimates of the distance between the node and each beacon,
assuming that the measurement error follows the statistical characterization in
(3). Finally, each distance r̂i, i ∈ {1, . . . , M}, used in the considered localization
algorithms, is obtained by averaging over the 100 estimates, i.e.,

r̂i =

∑100
j=1 r̂

(j)
i

100

where r̂
(j)
i is the j−th estimate of the i-th distance. We remark that this ap-

proach is different from the one followed in [10], where the localization algorithms
were applied to each set of range measurements {ri}

M
i=1 and the final position es-

timates were obtained by averaging the 100 position estimates. In each scenario,
we assume that the number of beacons is M = 4, i.e, the minimum number
which allows applying the localization techniques described in Section 3.

In Fig. 3, we investigate the performance of the scenario shown in Fig. 1,
i.e., four beacons (red squares) laying on the same plane are considered. In this
case, the matrix G involved in the TSML algorithm is not full rank, making this
method inapplicable. At the opposite, the PSO algorithm guarantees accurate
position estimates for all the nodes, as shown in Fig. 3.
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Fig. 3. The distance error, using the PSO algorithm, is shown as a function of the node
index.
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Fig. 4. The distance error on the position estimate of each node when using the TSML
algorithm (magenta hexagrams) and the PSO algorithm (green stars) are shown.
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Fig. 5. The beacons (red squares) and the nodes with unknown positions (blue dots)
are shown in a (three-dimensional) cubic region.
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Fig. 6. The distance error on the position estimate of each node when using the TSML
algorithm (magenta hexagrams) and the PSO algorithm (green stars) are shown.
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Fig. 7. Average distance error as a function of the swarm size S.

In Fig. 4, the performance in the scenario of Fig. 2 is investigated. Since,
in this case, the nodes do not lie exactly on parallel planes, as in Fig. 1, even
though the matrix G of the TSML algorithm is full rank, it is ill-conditioned,
leading to wrong position estimates of some nodes. In particular, the “critical”
nodes are 3, 4, 7, 8, in correspondence to which the position estimation error is
significantly higher than with the PSO algorithm. Overall, the PSO algorithm
allows locating all the nodes with a satisfying accuracy.

In Fig. 5, we consider once again the scenario described in Fig. 2, but with
a more general configuration of the beacons, which are now randomly placed.
Once again, the corresponding performance results, shown in Fig. 6, show that
the PSO algorithm leads to sufficiently accurate position estimates for all nodes,
while the TSML algorithm leads to inaccurate estimates of the positions of some
nodes. Therefore, it can be concluded that the performance of the PSO algorithm
is better not only in particular cases, i.e., when the beacons (almost) lay on the
same plane, but also with generic positions of the beacons.

Considering the same scenario of Fig. 5, we now investigate the impact of the
swarm size S on the localization accuracy. More precisely, we are interested in
evaluating the average distance errors, averaged over the 32 nodes with unknown
positions, for different values of the swarm size S. Once again, the stopping
condition for the PSO algorithm corresponds to reaching 50 iterations. In Fig. 7,
the average distance error is shown as a function of the swarm size S. When
considering values of the swarm size between 50 and 200, the average distance
error is a decreasing function of S. This is an expected behaviour, since the



higher is the swarm size, the faster is the convergence. At the opposite, when
considering values of S higher than 200, the average distance error is almost
constant, showing that increasing the population size above 200 individuals does
not improve the localization performance. Observe that the fact that the average
distance error does not attain zero is due to the fact that we are using the
estimated distances (and not the true ones) as an input for the PSO algorithm.
Finally, one can conclude that setting S equal to 200 is a good choice, as it is the
lowest value of the population size which allows to obtain an accuracy around
5 cm—this, in particular, has motivated the choice of S = 200 in the previous
performance results.

5 Conclusion

In this paper, we have proposed a swarm intelligent approach to UWB-signaling-
based position estimation of nodes in a static three dimensional indoor scenario.
Besides solving the non-linear system of the localization equations by means of
the TSML algorithm, which is a “geometric” algorithm, the original problem has
been re-written in terms of an optimization one, which is then solved by means
of the PSO algorithm. Our results show that, while the accuracy of the TSML
algorithm depends on the topology of the network and on relative positions of
beacons and nodes, the approach based on the PSO algorithm allows to achieve
a good accuracy in the position estimate, regardless of the configuration of nodes
and beacons.
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