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Doped-Fiber Amplifier Dynamics:
A System Perspective
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Abstract—Sunet al. [1] succeeded in reducing the set of coupled
first-order nonlinear partial differential equations determining
the wavelength-dependent, time-varying amplifier gain into a
single ordinary differential equation (ODE). In this paper, we fur-
ther simplify the ODE bringing into greater evidence the physical
meaning of the amplification process, and greatly enhancing the
utility of the ODE as an analysis and design tool. We find that the
gain dynamics of a doped-fiber amplifier are completely specified
by its total number of excited ions r, whose time behavior is
described by a simple first-order differential equation. We exploit
this new understanding of amplifier gain dynamics: 1) to develop
an equivalent circuit model for amplifier gain dynamics, 2) to
identify that channel addition causes much faster transients than
channel dropping in wavelength division multiplexing networks,
and 3) to demonstrate that gain excursions can be significant in
multichannel packet switching applications, which unlike time-
multiplexed signals are characterized by bursts and lulls in
communications. We are also able to revisit the most significant
previously published results on both steady-state and dynamic
analysis of doped-fiber amplifiers with a much more concise and
more intuitive derivation.

Index Terms—Doped-amplifier gain dynamics, EDFA, packet
switching.

I. INTRODUCTION

GAIN dynamics of erbium-doped fiber amplifiers
(EDFA’s) are already of considerable interest in

wavelength division multiplexed (WDM) networks, where
network reconfigurations or network faults can lead to the
adding or dropping of wavelength channels [1]–[4]. As the
need for bandwidth grows, optical communications will
become more common in network architectures. Transparent
wavelength routed optical networks (WRON) will form large
meshes of interconnected fiber links and cross connects.
Doped-fiber amplifiers will be key components of such
networks, and a study of their gain dynamics in a networking
scenario is essential for WRON design.

Given the interest in EDFA gain dynamics, much research
has been devoted to the solution of the set of coupled first-
order nonlinear partial differential equations determining the
wavelength-dependent, time-varying amplifier gain. The com-
plexity of the numerical solution of these equations has
motivated efforts to reduce them or to study steady state and
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asymptotic solutions. For instance, Salehet al. [5] eliminated
the time dependence of the gain to arrive at a single tran-
scendental equation for the steady state gain. Habbabet al.
[6] arrived at a linear approximation for the small signal gain
in single-channel amplifiers. More recently, Sunet al. [1] at
Bell Laboratories have succeeded in reducing the system of
coupled differential equations into a single ordinary differential
equation (ODE).

In this paper, we further simplify the ODE identified by Sun
et al. [1] bringing into greater evidence the physical meaning
of the amplification process, and greatly enhancing the utility
of the ODE as an analysis and design tool. We show that
the gain dynamics of a doped-fiber amplifier are completely
specified by its total number of excited ions, which we call the
reservoir , whose time behavior is described by a simple
first-order ODE. As Saleh noted in his landmark paper on the
steady-state gain equation [5], the power of such a reduced
equation is its simplicity. Standard control theory can now
be applied to the amplifier, usingas the state variable. The
paramount importance of the reservoir in the EDFA analysis
was independently found by Sunet al. in a paper submitted
at almost the same time as ours [7].

We note that the present analysis is based on the assumptions
of the model in [1] and [5], which neglects both excited state
absorption and saturation induced by the amplified sponta-
neous emission (ASE) produced inside the amplifier. There
are several methods to include such ASE contributions in the
model [8], [9] and future work will address this issue.

By further reducing the ODE describing the gain dynamics
we are able to revisit the most significant previously published
results on both steady-state and dynamic analysis of doped-
fiber amplifiers with a much more concise and more intuitive
derivation. Besides confirming previous results, this analysis
tool can now be used to attack open problems and newly
emerging issues in doped-fiber amplified communications. The
first immediate application of our results is the development of
an equivalent circuit model for amplifier gain dynamics. This
will allow analysis of extensive chains of amplifiers by the
readily available circuit simulation software already in place.

The next result relates to the relative speed of transients in
added versus dropped WDM channels. We have found that the
doped-fiber amplifier dynamics are connected to the depletion
and the refill of the reservoir. While the refill process is mainly
contributed by the pump, and is a process in which one pump
photon can excite at most one ion, the depletion process is
mainly caused by the signals, and is an avalanche process
connected to stimulated emission: one signal input photon can
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“burn” a very large number of excited ions in the reservoir.
Thus, the time scales connected to the depletion process
can be extremely fast, while those connected to the refill
process are slow and depend on the pump power and the total
number of dopant ions. In any case, the amplifier dynamics
are essentially independent of the fluorescence time. As a
consequence, channel addition causes much faster transients
than channel dropping.

Finally we examine the issue of amplifier response to packet
communications, which unlike time-multiplexed signals are
characterized by bursts and lulls in communications. We show
gain excursions can be significant in multichannel packet
switching applications, where signals are kept at a high power
level to avoid optical signal-to-noise ratio (SNR) degradations
when multiple amplifiers must be crossed.

The paper is organized as follows. In Section II, we derive
the ODE describing the system. As applications of our system
view of the amplifier, we give: an equivalent electric circuit
model of the amplifier (Section III); a view of the gain spread
as a function of the state(Section IV); an analysis of the sys-
tem reachability space (Section V); the steady-state asymptotic
values for large pump (Section VI); analytical approximations
to the step response of the system, both for a single amplifier
(Section VII); and for a chain of amplifiers (Section VIII);
the amplifier gain dynamics in a packet switching scenario
(Section IX).

II. THEORY

We start from the rate and photon equations used in [1],
derived assuming a two-level system for the dopant ions,
homogeneously broadened gain spectrum, no excited state
absorption, no background loss, and no self-saturation by
ASE. The rate equation for the fraction of excited ions,

, is

(1)

and the equations describing the propagation alongof the
photon fluxes [photons/s] of channel , are

(2)

where [s] is the fluorescence time,[m 3] is the ion density
in the doped fiber core of effective area[m2]; [m2],
and [m2] are the confinement factor, and the emission
and absorption cross sections of channel, respectively, and

. The length of the amplifier is [m]. Channels
entering at have while those entering at
have . The pump is placed on channel 0.

Dividing both sides of (2) by , multiplying by
and integrating from to yields

(3)

where

is the logarithmic gain

is the total number of excited ions in the amplifier, which we
call the “reservoir.” The reservoir is a number between “0” and

, the total number of ions in the doped fiber. The
state variable represents the number of available ions ready to
be converted into signal photons

and

are nondimensional parameters.
The standard parameters used in [1]–[6] are the absorption

coefficients and the intrinsic saturation

powers . We introduce
parameters , which are independent of, to stress that
the gain depends ononly through . Note that the definitions
of and include the directionality of the fluxes,
therefore obviating the need for the parameter[1].

Multiplying both sides of (1) by and integrating from
“0” to yields

(4)

Using (3) and (4) we arrive at a first-order ODE describing the
dynamic time behavior of the system’s state, i.e., the reservoir

(5)

Once the initial condition is specified, it is easy to show
that the solution of (5) is unique. can be any number in
the allowed range , although the range spanned by a
real amplifier can be narrower, as we will see in Section V.
If at time , i.e., one instant before the start of the
observation period, the amplifier is at equilibrium, then
must satisfy (5) with

(6)

which is the well-known Saleh steady-state equation [5]. For
a starting guess at its numerical solution, the upper bound

can be used.
Note that, for given input fluxes , the direction of

their entering the amplifier has no effect on. Hence co- and
counterpropagating pumping are equivalent in this analysis.
However we recall that ASE has been neglected in this
analysis, and in fact a copropagating pump always gives a
larger optical SNR [10].
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Equation (5) can be expressed equivalently in terms of the

normalized reservoir ,
also known as thefraction of excited ions[8], [10],

(7)

This form may be more useful in the study of an isolated
amplifier, as the main amplifier parameters are clearly visible
in the expression.

Note from (7) that input fluxes are meaningful in
relation to the total reservoir capacity . However, the
normalized input photon fluxes do not uniquely
describe the system behavior, since amplifiers with identical

, but different will behave differently even
if driven by the same normalized photon fluxes. All other
parameters being equal, however, one can tradefor by
keeping their product constant, i.e., one can have shorter but
otherwise identically behaving amplifiers by more strongly
doping the core. Another implication of (7) is that if the core
area is doubled the input fluxes must be doubled to obtain
identical system dynamics.

III. EQUIVALENT ELECTRIC CIRCUIT MODEL

We know by (5) that the derivative of exists, hence
is a continuous function of, even when the inputs
are discontinuous. Just as the charge on a capacitor cannot
change instantaneously, the reservoir is similarly constrained.
Note also that (5) has a nice physical meaning: the variation
of the reservoir (the “charge” on the amplifier) is given by the
total input flux , minus the output flux ,
minus the spontaneous decay from the excited level.
Hence by identifying photon fluxes with currents, and the
reservoir with the charge on a capacitor, or better yet with
the voltage across a capacitor of capacity , we get the
equivalent electric circuit depicted in Fig. 1(a).

The circuit is composed of input current sources (the
channels) and of a pump channel “0,” hidden inside the
amplifier. The currents feed the capacitor, whose voltage is
the reservoir . The currents out are current
generators controlled by voltageand current . The output
pump current is shunted to ground and does not exit the
amplifier. The RC constant of the capacitive circuit is.
However this is an active circuit, and it is clear that the
actual time constants involved in the dynamics are essentially
independent of .

The circuit model for a subsequent loss is shown in
Fig. 1(b). It is a bank of current-controlled current generators
that shunt part of the output photons to ground, effectively
wasting them. Using these building blocks for the amplifier
and the loss, a complex network of amplifiers can be solved
by any electric circuit simulator available on the market. This
is perhaps the most immediate practical application of our
system view.

(a)

(b)

Fig. 1. (a) Fiber amplifier equivalent circuit and (b) equivalent circuit
of an optical lossL. Input sources are independent current generators.
The controlled generators arecccs = current-controlled current source;
mccs = multicontrolled current source.

IV. GAIN SPREAD

Equation (3) shows that the log-gains of all channels at all
times are linear functions of the (normalized) reservoir

If we fix a specific choice of cross sections and
plot the quantity as a function of , we
find that for , all log-gains are negative, while all
log-gains are positive for . A minimum spread point
near is clearly visible.

The dB-gain is linearly dependent on the mean fraction
of excited ions , i.e., for a specific choice of amplifier
parameters, we note again that the gains have minimum spread
of about 0.6 dB for near 0.78. As moves away from such
value, the gain spread becomes larger. This view of the linear
dependence of the gains on the system state is of paramount
importance, as we will see in the following sections.

V. REACHABILITY

Once the initial condition is given, we have seen that
the solution to (7) is unique. What happens if we artificially
start the state outside the allowed range [0, 1]? What are
the minimum and maximum values of actually reachable
by starting the system at equilibrium and by using proper
driving signals ? Such questions naturally arise when
implementing the electric equivalent circuit.
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1) Upper Limit: Suppose we start the system at .
Then , and the gain
of every channel is positive, i.e., all channels are gaining
photons. Thus, we have so that from
(7) we have , i.e., the reservoir must be supplying
the required photons and is thus discharging.

The reservoir can only cease discharging when at least one
of the gains becomes negative. This happens for the pump first,
which is the one providing gain to the channels in normal
conditions. Hence, certainly until ,
i.e., until

(8)

which is thus an upper bound on the maximum achievable.1

The actual maximum value of, for a given set of input
fluxes , at which the derivative can be zero must be
a solution of Saleh’s (6). Its maximum value over all possible
inputs , for a given finite pump , is found by taking

for all , i.e., as the small signal steady-state
value satisfying (6)

(9)

The maximum value of is found letting .
Since is bounded, from (9) we must have as

. Hence

(10)

i.e., is achieved asymptotically for infinite pump.
2) Lower Limit: Suppose we start the system at .

Then , and the gain of every
channel is negative, i.e., all channels are losing photons.
Thus we have so that from (7) we
have , and the reservoir is charging. The reservoir
will not cease charging until (at least) , at which
point the derivative could change sign. The lowest achievable
value of is trivially zero, obtained when no beam is present
at the input.2

In summary, the reachable range ofis . If the
amplifier is pumped but the input signals are not present,
the (normalized) reservoir fills up to its rightmost limit.
As soon as signal fluxes arrive, the reservoir starts depleting,

starts decreasing, and it will decrease down to its steady
state leftmost value if the input signals eventually settle to a
limiting continuous-wave (CW) value.

VI. STEADY-STATE ASYMPTOTIC VALUES

Consider a single fiber amplifier, with CW input fluxes
, and pump flux . The steady-state

1More generally we should writex � max
fjgf�

a
j =�

T
j g.

2We are neglecting the thermally induced ion excitation.

reservoir value is found from (6) as the solution to

(11)
Now we determine the limiting value of when ,

assuming such a limit exists. Take of both sides of
(11). A necessary and sufficient condition for the RHS to be
finite is which implies

(12)

The log-gain values for infinite pump are therefore

(13)

which is a generalization to the multibeam case of the so
called infinite-pumpsmall-signal gainscalculated by Habbab
et al. [6] for a single channel. It is clear that an infinite pump
makes any finite beams look like small signals. For a
strong pump, Habbab’s linear approximation tends to be more
accurate ([6, Figs. 4–6]), and in the infinite pump limit it is
exact, since the gains, as seen in (13), do not depend on the
signal input power.

VII. GAIN DYNAMICS: STEP RESPONSE

Suppose we have a single amplifier, described by (5). At
time (i.e., an instant before time 0) we are given the
initial value and the inputs .3 The system need
not be at steady state at . At time each input
flux undergoes a discontinuity and then remains constant for
all

(14)

Then (5) at gives

(15)

where , and at gives

(16)

For small values of, we can approximate the actual solution
of (5) with a straight line

(17)

More generally, we can differentiate (5) times and find
the derivatives at time zero , and
approximate with its truncated Taylor series in

(18)

One problem with such polynomial approximations at
is that they fail to converge to the actual solution for .

3Note thatr(0+) = r(0�) since _r(0) exists.
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A reasonable compromise between accuracy near
and asymptotic convergence is obtained by the exponential
approximation

(19)

where is the steady state value of (approached
asymptotically for ) with the new input fluxes (14),
and is the exponential time constant. To get accuracy near

we impose that , i.e., the derivative of
the approximation matches that of the actual solution at time

. We have from (19) ,
so that we find the time constant

(20)

The exponential approximation gives a better model to
describe the gain dynamics for longer time scales with respect
to the polynomial approximations. It gives a good description
of the transients in a circuit switching scenario, with channels
being added/dropped dynamically. Such an approximation has
been suggested in [3], but an explicit expression for the
exponential time constant was missing. It has been shown
in [3] that the exponential approximation is indeed closer to
the experimentally measured value of . Appendix A gives
an analytical justification of the exponential approximation,
corroborating the results in [4].

As a numerical example, consider a case very similar to
the one presented in [1]. The amplifier has two input channels

nm and nm, with initial input
powers dBm and Log dBm,
simulating the remaining seven channels of an eight-channel
system with 2 dBm/channel. The amplifier is pumped at 980
nm, with pump power 18.4 dBm, and has m,
ms. The absorption coefficients are [0.257, 0.145, 0.125] m1

and the intrinsic saturation powers are [0.440, 0.197, 0.214]
mW at [980, 1552.4, 1557.9] nm, respectively. The system is
at equilibrium before . At time part of the power on
channel 2 is dropped, simulating the drop of a given number
of channels.

Fig. 2(a) shows the reservoir dynamics for the exact solution
of (5) and for the exponential approximation (19), for power
variations in channel 2 simulating the drop of four and seven
channels, and the addition of seven channels, respectively.
Fig. 2(b) shows the corresponding output power excursion
on channel 1, defined as Log . This
figure matches very well with [1, Fig. 1]. The exponential
approximation for the reservoir is always below the actual
solution, and larger errors are obtained for larger power drops.

As another example of step response, consider in Fig. 3 the
turn-on dynamics of the previous amplifier, in which no beam
is present before and the pump is turned on at .
From (20) we have

s. Since we have a strong pump and no signals in
at , the steady state value is approximated by (12).
Observing also that and (amplifier OFF),
and that , we get . This means that
the turn-on time is the time it takes the pump, providing

(a)

(b)

Fig. 2. Time evolution of (a) reservoir and (b) output power excursion for
surviving channel 1 with channel 2 undergoing step variations att = 0. Solid:
Exact solution of (5). Dashed: Exponential approximation.

(a)

(b)

Fig. 3. Numerical solution of (5) giving the system time evolution, with
pump turned on att = 0: (a) reservoir; (b) gains at [980, 1552.4, and 1557.9]
nm.

photons/s, to invert the whole ion population in a one-to-one
process. This also justifies the observed nearly linear increase
in the reservoir. Note that the exponential approximation is
accurate for low values and high values of, with poorest
performance at the knee of the curve. This is not surprising,
as the time constant was chosen to give exact results for
and .

This long time constant, as well as the ones relative to
channel drops in the previous example, which are of the order
of 100 s, are connected to the long time required by the pump
to refill the reservoir. One pump photon can at most excite one
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ion, and thus it takes a strong pump flux to have a fast refill.
On the other hand, the fast dynamics observed in the signal
add process are connected to the time it takes the added signal
to deplete the reservoir. One signal photon can “burn” many
excited ions in the stimulated avalanche process, and thus it
is sufficient to have a relatively weaker signal to have much
faster system dynamics.

VIII. STEP RESPONSE INAMPLIFIER

CHAINS: INITIAL POWER EXCURSION

In this section we apply our theory to the study of transient
gain dynamics in a chain of amplifiers in response to channel
dropping/adding in a circuit switching scenario, a case also
studied in [2]. In Appendix B we further examine how the
phenomenon of gain peaking can be predicted using the
simplified ODE in (5).

Consider a chain of identical fiber amplifiers, identical
interamplifier loss , and beams at the chain input,

with CW fluxes for the signals, and
for the pump. As in Section VIII, at time the fluxes at
the input of the chain have a discontinuity, so that for
(14) holds for . Such discontinuity propagates
instantly along the amplifier chain.4 Equations (15) and (16)
describe the derivative of reservoir at each amplifier

along the chain.
Let be the flux of channel at the input of the th

amplifier. By definition, for all , and
for all since the pump is restored at each amplifier. Let

be the linear gain of channel at the th
amplifier. At the input of the th amplifier, we can thus write
for channel

(21)
Equation (16) for the th amplifier then becomes

(22)
If the system is started at equilibrium ( ),

and if the gains of each channel are almost equal along
the chain, very close to the interamplifier loss and large

, then

(23)

which shows that the slope of every reservoir in an
initially “balanced” chain is approximately equal to (23) for
every amplifier.

As a numerical example, consider a case very similar to
the one presented in [2]. The amplifier chain has 20 identical
amplifiers and two input channels at 1552.1 and 1557.7 nm,

4We are neglecting the propagation delay of light in the fiber chain.

(a)

(b)

Fig. 4. Numerical solution of (5) giving the time evolution along a chain of
20 amplifiers with one channel drop att = 0: (a) reservoir and (b) output
power of surviving channel.i = amplifier index along the chain.

with initial input power of 3 dBm/channel. The amplifiers are
identical to those used in Section VII. The interamplifier loss
is dB. The system is at equilibrium before .
At time the 1557.7 nm channel is dropped completely.

Fig. 4(a) shows the time evolution of the reservoirs
along the chain, obtained by numerically

solving (5) for each amplifier. It can be seen that, in this
initially well-balanced chain, the initial slopes of all reservoirs
are very close in value confirming (23). The first amplifier
reservoir has a monotone increase, while all the following
amplifiers have damped oscillations in their reservoirs.
The new steady-state reservoir values quickly converge
beyond the third amplifier ( ) to the asymptotic value

determined by
channel 1, as derived in (33) of Appendix B.

In the case just examined we have only one signal, and
the convergence of the signal gain to the interamplifier loss
is a regulating effect known as self-healing [11]. In the case
of many signals, Appendix B shows that along an infinite
chain only one channel survives, whose gain adjusts to the
interamplifier loss, while all the other channels are suppressed.

Fig. 4(b) shows the output powers at channel 1 correspond-
ing to the reservoirs in Fig. 4(a). A strong overshoot is visible
as the amplifier index increases.



BONONI AND RUSCH: DOPED-FIBER AMPLIFIER DYNAMICS 951

(a)

(b)

Fig. 5. Time evolution of the dB power execution along a chain of 20
amplifiers on the surviving channel. (a) Long time scale and (b) short time
scale.

The dB power excursion at theth amplifier on channel is
Log [2]. We easily find

Using the linear approximation for
each reservoir and (3), we finally get the dB power excursion
at the th amplifier as

Log (24)

which shows the excursion grows (initially) linearly in time
with slope proportional to the sum of the slopes
of the reservoirs along the chain. As noted in [2], if these
are all equal, the slope of the excursion grows linearly with
the amplifier index down the chain. Fig. 5(a) and (b) shows
the power excursion on the surviving channel relative to the
example above, respectively, on a long time scale and a short
time sclae.

(a)

(b)

Fig. 6. Numerical solution of (5) giving the system time evolution with a
single pulsed input signal. (a) The graph shows signal and pump outputs
powers. (b) The graph shows the signal gain. Input signal powers are 0.5,
1, and 2 mW.

IX. DYNAMICS IN PACKET SWITCHING

In this section, we will illustrate the amplifier dynamics in
a packet switching environment. Bits on the signal channels
arrive in bursts, or packets, followed by lulls, i.e., periods of
source inactivity.

Assume we start at with the pump only. The first
packet reaching the amplifier will find a full reservoir, and
thus enjoys the small-signal gain (13) if the pump is strong
enough. However, if the input packet power is high and its
duration is long, it will quickly start depleting the reservoir by
stimulated emission, thus causing a very fast power transient
across the packet. The last bits will experience a much lower
gain than the initial bits.

As a numerical example, consider a case similar to the one
presented in [12]. The amplifier is pumped at 1480 nm, with
pump power 36 mW, and has m, ms. There
is one pulsed input channel at nm, with peak
input pulse power varied from 0.5 to 2 mW. The absorption
cross sections are [7.9, 1.6] 10 25 m2 and the emission
cross sections are [0.35, 1.7]10 25 m2 at [1480, 1535] nm,
respectively. The system is at equilibrium before . At
time s a pulse of duration 1s arrives on channel 1.

We can clearly observe in Fig. 6 the power sag across the
output packet caused by the fast depletion of the reservoir
by the pulse, and the gain decrease across the packet time. A
larger signal power gives more power sag. The pump power is
also shown, but is barely visible in the Fig. 6; it also exhibits
a similar sag in power. Again, the important point is that the
gain dynamics can be extremely fast upon strong signal pulse
arrivals, due to the stimulated-emission avalanche depletion
of the reservoir.

In passing, note that Koet al. [12] arrived at the same
results by solving the system of coupled differential equa-
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(a)

(b)

Fig. 7. Numerical solution of (5) giving the system time evolution with two
input pulsed channels of input power�2 dBm each. Amplifier data are the
same as in Fig. 2, but with lengthL = 40 m. (a) shows pump and signals
output powers and (b) shows the gain at the signal wavelengths.

tions describing more accurately the amplifier dynamics. They
considered also the effect of spontaneous emission noise, but
their results match very well with our figures, indicating that
saturation induced by ASE is not an issue here.

Giving the reservoir enough time to refill will effectively
restore the initial conditions, so that the next pulse will behave
exactly as the one shown in Fig. 6. If however a packet arrives
before complete gain recovery (recall that the recovery time is
slow, since it is connected to the one-to-one inversion process),
it will experience less initial gain, and thus less power sag
shows across the output packet power.

As another example, consider the amplifier with two chan-
nels used to generate Fig. 2, but with length increased to

m. As shown in Fig. 7, two pulsed input channels
of peak input power 2 dBm each feed the amplifier, initially
at steady state without input signals. Pulses have a duration
of 170 ns, corresponding to an asynchronous transfer mode
(ATM) cell of 424 bits at 2.5 Gb/s. The first pulse (packet)
arrives on channel 1 and starts depleting the reservoir. When
the next pulse on channel 2 arrives and overlaps the first
pulse, the reservoir depletes faster, and the gain and power
curves become steeper. When the overlapping ends at the end
of the first pulse, the slope relaxes, since less reservoir ions get
burned per second. When the next pulses arrive, the reservoir
has not had time to recover. Actually, the reservoir barely
started refilling, as seen by the slight increase of the gain
between pulses.

The pump power of 69 mW (18.4 dBm) is barely visible
at the top of Fig. 7. The output power of the first pulses
ranges between 2 and 3 W, as should not be surprising.
The effect is very similar to Q-switching [13]. Such pulses
find the reservoir completely filled, and thus experience the
small-signal gain. As subsequent pulses arrive, they will get

(a)

(b)

Fig. 8. Numerical solution of (5) giving the system time evolution with one
input train of pulses of peak power�2 dBm, pulse durationTp = 170 ns,
one pulse every two slots. Amplifier data are the same as in Fig. 7 where (a)
shows signal and pump output power and (b) shows the signal gain.

less and less amplification, until the gain converges to its
“dynamic” steady-state value, with an average output power
on the channels necessarily below the pump CW power.

Fig. 8 shows the gain dynamics starting at steady state for
a train of pulses of peak input power2 dBm, pulse duration

ns, repetition period (one pulse every
two slots), and the same amplifier data as in Fig. 7. The first
pulses have a strong power sag, but as the gain decreases,
subsequent pulses experience less gain, and thus the tilt on the
gain decreases, to essentially vanish at dynamic equilibrium
in this case of “short” pulses.

Fig. 9 shows that flat gain at equilibrium is not always
present, and that the packet duration is the discriminating
parameter. While for short packets, e.g., ATM cells at 2.5
Gb/s, the residual power sag at dynamic equilibrium is less
than 0.5 dB, for longer packets of duration s, e.g.,
ATM cells at 150 Mb/s, the residual power sag at dynamic
equilibrium can be more than 3 dB. Note that to speedup the
numerical computations and observe the solution of (5) close
to dynamic equilibrium when a pulse train of peak power
is feeding the amplifier, we start with initial conditions

found from (6) with CW input signal .
It is now interesting to find, for a given cell duration, how

the gain swing varies with the repetition frequency .
Ko et al., have experimentally measured such curves for 100
ns duration pulses ([12, Fig. 6]), but the gain swing for such
short pulses is not noticeable. Solving (5) numerically for a
large set of repetition frequencies is a long task. In Appendix
C we resort to the exponential approximation (19) to find the
gain sag across the cell as a function of the repetition rate.
Using the algorithm in Appendix C, we obtain the upper and
lower values and of the dB-gain, shown in Fig. 10
versus cell repetition rate , for (a) ATM cells at 2.5 Gb/s
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(a) (b)

Fig. 9. Numerical solution of (5) giving the system time evolution at dynamic equilibrium. One input train of cells of peak input power�2 dBm, one
cell every 20 slots. (a) ATM cells at 2.5 Gb/s and (b) ATM cells at 150 Mb/s. Amplifier data is the same as in Fig. 7. The top graphs show signal
and pump output power and the bottom graphs show the signal gain.

(a) (b)

Fig. 10. Upper and lower valuesGU andGL of dB-gain across cells versus cell repetition rateRr . (a) ATM cells at 2.5 Gb/s and (b) ATM cells at
150 Mb/s. Pump power 18.4 dBm, signal peak input power�2 dBm.

and (b) ATM cells at 150 Mb/s. The pump power is 18.4 dBm,
and the signal peak input power is2 dBm.

At low repetition rates the gain sag across the cell is
larger. The asymptotic value for is found easily,
by considering that in such case the reservoir has time to
completely recover after each pulse. Hence, tends to the
small-signal gain. tends to the gain value observed in an
isolated pulse, and is lower for longer pulse duration. Also
shown in the figure is the average power analysis, i.e., a steady-
state gain analysis using (6), assuming a CW input signal of
flux . We note that upper and lower gain values converge to
the average power analysis value as the repetition frequency
is increased. As already observed, for ATM cells at 150 Mb/s
the gain sag can be as extreme as 6 dB for low repetition rates.

So far we have learned that gain dynamics can give large
power swings across the cells if long cell interarrival times, or

lulls, give the amplifier enough time to recover. We conclude
this section by showing in Fig. 11 the effect of such lulls in
an eight-channel system feeding an amplifier, with channels
at wavelengths from 1538 to 1560 nm, with 2 nm spacing.
The amplifier has the same parameters as in Section IV. Each
channel is carrying a periodic train of ATM cells of repetition
time . The bit rate in the cells is 150 Mb/s. All channels
are aligned to the slot time at the input of the amplifier. We
start the reservoir close to dynamic equilibrium, obtained by
the average power analysis. All eight channels start at the first
slot at time “0” with a cell.

We chose the repetition times of the trains on the channels
to be 9, 10, 12, 15, 18, 20, 30, and 36 slots, respectively,
so that after 180 slot times (the least common multiple of
the repetition times) all eight trains have again overlapping
cells. This scheme artificially creates periodic lulls after each
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(a)

(b)

Fig. 11. Numerical solution of (5), in the case of eight pulsed channels.
Pulses are ATM cells at 150 Mb/s one slot is 2.8�s and the pump is 18.4
dBm. The peak input power is�2 dBm/channel. where (a) shows pump and
signal output powers and (b) shows the gain at the eight signal wavelengths.

coincidence slot, every 180 slot times, of duration given by the
smallest repetition time, in this case eight slots. The top graph
of Fig. 11 shows pump and signal output powers. Overlapping
cells at different wavelengths are visible in the figure. The
bottom graph shows the gain at the eight signal wavelengths.

X. CONCLUSIONS

In this paper, we further simplify the ODE for the doped-
fiber amplifier gain dynamics reported in [1], bringing into
greater evidence the physical meaning of the amplification
process, and greatly enhancing the utility of the ODE as
an analysis and design tool. We find that the doped-fiber
amplifier dynamics are connected to the depletion and the
refill of the reservoir of excited ions in the amplifier. While
the refill process is mainly contributed by the pump, and is
a process in which one pump photon can at most excite one
ion, the depletion process is mainly caused by the signals,
and is an avalanche process connected to stimulated emission:
one signal input photon can “burn” a very large number of
excited ions in the reservoir. Thus, the time scales connected
to the depletion process can be extremely fast, while those
connected to the refill process are slow and depend on the
pump power and the total number of dopant ions. In any
case, the amplifier dynamics are essentially independent of
the fluorescence time. An important consequence of the above
is that channel addition causes much faster transients than
channel dropping in WRON’s.

Perhaps the best scenario to observe the amplifier gain
dynamics is in multichannel packet switching applications,
where signals are kept at a high power level to avoid optical
SNR degradations when multiple amplifiers must be crossed
before reaching destination. We have given figures of the gain
swing across packets in such environment.

The present analysis is based on the assumptions of the
model in [1] and [5], which neglects both excited state ab-
sorption and saturation induced by the amplified spontaneous
emission (ASE) produced inside the amplifier. There are
several ways to include such ASE contributions in the model
[8], [9], and future work will address this issue. However, the
main findings of the present work will be valid as long as the
signal powers are large and the main contribution to amplifier
saturation.

APPENDIX A
EXPONENTIAL APPROXIMATION: DERIVATION

In Section VII, we gave an exponential approximation to
the actual solution of (5) for step-like driving signals. To give
an analytical justification to the approximation, we rewrite (5)
by adding and subtracting in the log-gain exponent so
that for

(25)

Define the deviation from as . Now
expand the exponential term in (25) in a taylor series around

(26)

We can then write

(27)

where , and represents terms
vanishing faster than as . If we neglect the
terms, and the drive signals are time-independent for

, then (27) becomes a linear ODE whose solution is

(28)

with time constant

(29)

This time constant is also given in [4, eq. (28)].
Recalling our equivalent circuit model, note from (29)

that we can interpret as an equivalent
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conductance which is in parallel with to give the
effective circuit conductance seen by the capacitor, the
one determining the circuit dynamics. Once again, it is clear
that the system dynamics very weakly depend on the “resistor”
, since this is in parallel to the usually much smaller resistor

.
Note that both approximation (19) and (28) give the correct

values for the derivative at time zero despite differing time
constants. However, only (19) gives the correct asymptotic
value of the reservoir in steady state. The exponential form
(28) is a good approximation for small values of, while the
approximation in Section VII extends to asymptotic values as
well.

APPENDIX B
GAIN PEAKING IN AMPLIFIER CHAINS

The gain spread in each amplifier along a chain of amplifiers
leads togain peaking[10], i.e., to the fact that one channel
tends asymptotically to a fixed output power at the output of
each amplifier down the chain, while all other powers decrease
and eventually disappear. Gain peaking is the dominant feature
characterizing chains of fiber amplifiers, the one that has most
impact on system performance.

To derive gain peaking analytically, consider a chain as
described in Section VIII. Recall that in this analysis, we
neglect ASE. Consider the next steady state after the power
discontinuity. The reservoir of the th amplifier satisfies (6)

(30)

is obtained from (21), giving (31) shown at the
bottom of the page.

Now we look for the limit value of as .
Suppose such a value exists, and denote it as

. It is easy to show that under this
assumption . Now take

of both sides of (31). Consider the limit of the
exponent on the right-hand side (RHS)

In order to get a finite value of the exponent for channel,
we need

(32)

Fig. 12. Graphical determination of steady state (normalized) reservoir value
r
ss
1

and surviving channelch along an infinite chain of interamplifier lossLI .

If instead we have , then the limit of
the exponent is .

Thus, for interamplifier loss , the limit value is given
by, as shown in Fig. 12, the largest value ofsuch that the
log-gain of a specific channel equals the interamplifier loss

, and the log-gain of all other channelsis less than
. Only channel survives in the infinite chain, its gain

being equal to the loss, while all other channels vanish, having
gain lower than the loss. The limit value of the reservoir is
found to be

(33)

and the surviving channel is the one that achieves the
minimum.

APPENDIX C

This Appendix derives the approximate dynamic equilib-
rium extremum values of the reservoir when the amplifier is
pumped by a CW pump with flux and is fed by a signal
pulse train of pulse duration , repetition time , and peak
input flux .

At dynamic equilibrium, the upper and lower values of the

reservoir and are related to the pulse
duration and the idle time between pulses
as shown in Fig. 13. To find and at equilibrium we use
the following numeric algorithm.

Start with an initial guess , where
is the steady state value found from (6) with input fluxes
and .

(31)
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Fig. 13. Dynamic equilibrium.

1) From (15), we get

since .
2) From (16), we get

since is the only channel with step variation at
.

3) In the exponential approximation of the gain dynamics,
from (20) we get

where is the steady state value found from (6)
with input fluxes and . Then we set

4) Update the reservoir derivative at using (15)

since both and are present at .
5) From (16), we get

since is the only channel with step variation
at .

6) In the exponential approximation of the gain dynamics,
from (20) we get

where is the steady state value found from (6)
with input flux only (pulse absent). Then we set

7) Repeat 1)–6) until and converge.

The same algorithm can be applied using the linear ap-
proximation in (17) instead. The values obtained by the linear
approximation tend to converge to those obtained by the
exponential approximation for high repetition rates, although
the exponential approximation always gives values closer to
the actual ones.
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