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Doped-Fiber Amplifier Dynamics:
A System Perspective
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Abstract—Sun et al.[1] succeeded in reducing the set of coupled asymptotic solutions. For instance, Sakttal. [5] eliminated
first-order nonlinear partial differential equations determining  the time dependence of the gain to arrive at a single tran-

the wavelength-dependent, time-varying amplifier gain into a ; :
single ordinary differential equation (ODE). In this paper, we fur- scendental equation for the steady state gain. Halelbad.

ther simplify the ODE bringing into greater evidence the physical _[6] erived at a linear aPPrOXimation for the small signal gain
meaning of the amplification process, and greatly enhancing the in single-channel amplifiers. More recently, Senal. [1] at
utility of the ODE as an analysis and design tool. We find that the Bell Laboratories have succeeded in reducing the system of

gain dynamics of a doped-fiber amplifier are completely specified coupled differential equations into a single ordinary differential
by its total number of excited ions r, whose time behavior is equation (ODE)

described by a simple first-order differential equation. We exploit . . . . .
this new understanding of amplifier gain dynamics: 1) to develop I this paper, we further simplify the ODE identified by Sun

an equivalent circuit model for amplifier gain dynamics, 2) to et al. [1] bringing into greater evidence the physical meaning
identify that channel addition causes much faster transients than of the amplification process, and greatly enhancing the utility
channel dropping in wavelength division multiplexing networks, of the ODE as an analysis and design tool. We show that

and 3) to demonstrate that gain excursions can be significant in . . > e
multichannel packet switching applications, which unlike time- the gain dynamics of a doped-fiber amplifier are completely

multiplexed signals are characterized by bursts and Iulls in SPecified by its total number of excited ions, which we call the
communications. We are also able to revisit the most significant reservoirr(t), whose time behavior is described by a simple
previously published results on both steady-state and dynamic first-order ODE. As Saleh noted in his landmark paper on the
analys:is o_f_doped-_fibgr amplifiers with a much more concise and steady-state gain equation [5], the power of such a reduced
more intuitive derivation. L . . ..
equation is its simplicity. Standard control theory can now
Index Terms—Doped-amplifier gain dynamics, EDFA, packet be applied to the amplifier, usingas the state variable. The
switching. paramount importance of the reservoir in the EDFA analysis
was independently found by Swet al. in a paper submitted
|. INTRODUCTION at almost the same time as ours [7].
. . , o We note that the present analysis is based on the assumptions
AIN _ dynamics of —erbium-doped fiber ampln‘lersof the model in [1] and [5], which neglects both excited state

(EDFA’s) are already of considerable interest in

wavelength division multiplexed (WDM) networks Whereabsorption and saturation induced by the amplified sponta-

network reconfigurations or network faults can lead to tHa ous emission (ASE) produced inside the amplifier. There

. - re several methods to include such ASE contributions in the
adding or dropping of wavelength channels [LI-[4]. As th%’nodel [8], [9] and future work will address this issue.

need for bandwidth grows, optical communications will ) - . .
become more common in network architectures. TransparenFSy further red“‘?”?g the ODE _de;gnbmg the_ gain dyna_m|cs
e are able to revisit the most significant previously published

wavelength routed optical networks (WRON) will form large’ ; )
g P ( ) g sults on both steady-state and dynamic analysis of doped-

meshes of interconnected fiber links and cross connecfs: o : . L
er amplifiers with a much more concise and more intuitive

Doped-fiber amplifiers will be key components of such ™~ . - ) : :
networks, and a study of their gain dynamics in a networki rivation. Besides confirming previous results, this analysis
tool can now be used to attack open problems and newly

scenario is essential for WRON design. o i ) v S
?gnergmg issues in doped-fiber amplified communications. The
i

Given the interest in EDFA gain dynamics, much resear , X S .
has been devoted to the solution of the set of coupled fir st immediate application of our results is the development of

order nonlinear partial differential equations determining tH! eduivalent circuit model for amplifier gain dynamics. This
wavelength-dependent, time-varying amplifier gain. The coﬁ’i’-'" ?"OW a.naIyS|s. of -ext'enswle chains of ampllfler§ by the
plexity of the numerical solution of these equations ha{gadlly available circuit simulation software already in place.

motivated efforts to reduce them or to study steady state and Ne next result relates to the relative speed of transients in
added versus dropped WDM channels. We have found that the
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“burn” a very large number of excited ions in the reservoiis the logarithmic gain

Thus, the time scales connected to the depletion process

can be extremely fast, while those connected to the refill

process are slow and depend on the pump power and the total

number of dopant ions. In any case, the amplifier dynamics

are essentially independent of the fluorescence time. Agsahe total number of excited ions in the amplifier, which we

consequence, channel addition causes much faster transiéﬁtbtAl’le “reservoir.” The reservoir is a number between “0” and

than channel dropping. ry = pAL, the total number of ions in the doped fiber. The
Finally we examine the issue of amplifier response to packgate variable represents the number of available ions ready to

communications, which unlike time-multiplexed signals aree converted into signal photons

characterized by bursts and lulls in communications. We show

gain excursions can be significant in multichannel packet Aj éprkggL and B, ﬁrkg{/A

switching applications, where signals are kept at a high power

level to avoid optical signal-to-noise ratio (SNR) degradationfe nondimensional parameters.

when multiple amplifiers must be crossed. The standard parameters used in [1]-[6] are the absorption

The paper Is qrganlzed as follows. In 'Se(.:t|on I, we de”V&)efﬁcientSak & pTwo@ = Ay/L and the intrinsic saturation
the ODE describing the system. As applications of our system s A T .
view of the amplifier, we give: an equivalent electric circuiP®WVers £i° = hvA/Lyopr = hv/Byr. We introduce
model of the amplifier (Section Ill); a view of the gain Spreaqlaramgter%k, By, which are independent of, to stre§§ .that
as a function of the state(Section IV); an analysis of the sys-€ 92in dependstOﬂany throughr. Note that the definitions
tem reachability space (Section V); the steady-state asympté)(ch}?(t) and Qiu (t) include the directionality of the fluxes,
values for large pump (Section VI); analytical approximation&i€refore obviating the need for the parametgr{1].

to the step response of the system, both for a single amplifiefultiPlying both sides of (1) bydz and integrating from

L
r(t) 2 pA /0 Ny(z, t)dz

(Section VII); and for a chain of amplifiers (Section Vviily; 0 © L vields
the amplifier gain dynamics in a packet switching scenario N
i ar(t r(t :
(Section IX). 8(t) _ _¥ _ Z[Q?ut(t) — Qt)]. (4)
,':0
Il. THEORY !

We start from the rate and photon equations used in [ §ing (3) and (4) we arrive at a first-order ODE describing the
derived assuming a two-level system for the dopant io namic time behavior of the system’s state, i.e., the reservoir
homogeneously broadened gain spectrum, no excited stz
absorption, no background loss, and no self-saturation by

ASE. The rate equation for the fraction of excited iaNg, r(t) N
0< N <1is (t) = ===+ D QP - P,
r =0
INy(z,8) _ Na(zt) 1 Z 2220 g (5)
ot N T pA = T Oz

Once the initial condition(0) is specified, it is easy to show
and the equations describing the propagation alerg the that the solution of (5) is unique(0) can be any number in

photon fluxeg, [photons/s] of channel, k =0, ---, IV, are the allowed rang€o, r,], although the range spanned by a
9Qu(z, 1) real amplifier can be narrower, as we will see in Section V.
T’ = purl'x [0k Na(z, t) — 03] Qu(z, ) (2) If at time ¢t = 0~, i.e., one instant before the start of the

observation period, the amplifier is at equilibrium, thg)
wherer [s] is the fluorescence timg,[m 2] is the ion density must satisfy (5) with#(0~) = 0
in the doped fiber core of effective area[m?]; T'x, of [m?],
and ¢ [m?] are the confinement factor, and the emission N
and absorption cross sections of chanketespectively, and r(0) = TZ Q¥(07) [1 - eBa'”(O)—AJ} (6)
ol 2 o5, +of. The length of the amplifier i€ [m]. Channels =0
entering atz = 0 havewu; = 1 while those entering at = L

havew;, = —1. The pump is placed on channel O. which is the well-known Saleh steady-state equation [5]. For
Dividing both sides of (2) byQ, # 0, multiplying by d= @ stitrrting. guess at its numerical solution, the upper bound
and integrating fromz = 0 to L yields T2 =0 @7*(07) can be used. .
Note that, for given input fluxe€)i*(¢), the direction of
Gi(t) = Bur(t) — Ax, k=0, N () their entering the amplifier has no effect enHence co- and
where counterpropagating pumping are equivalent in this analysis.
L . However we recall that ASE has been neglected in this
G 4 u0Qr {Qiu (t)} Ivsi d in fact ti | i
HOE =1 3 analysis, and in fact a copropagating pump always gives a
o Q@ w () larger optical SNR [10].
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Equation (5) can be expressed equivalently in terms of the
normalized reservoig(t) 2 1/L j;JL No(z, t)dz = r(t)/rm,
also known as théraction of excited ion$8], [10],

N :
. t Qm(t) ol z(t)—a®

(R aE
R : _,L

This form may be more useful in the study of an isolated \«\ [7
gmplifier, as the main amplifier parameters are clearly visible pump pump
in the expression. added removed

Note from (7) that input ﬂuxesQ}’f1 are meaningful in (@
relation to the total reservoir capaciWA4. However, the
normalized input photon fluxe€)}®/ry, do not uniquely _
describe the system behavior, since amplifiers with identical . ;_,l o Q')

aT(X), a*()\), but differentr,; will behave differently even »
if driven by the same normalized photon fluxes. All other o« b = Q'
parameters being equal, however, one can tiader L by 9 ) 11;
keeping their product constant, i.e., one can have shorter but ; W=7 |
otherwise identically behaving amplifiers by more strongly
doping the core. Another implication of (7) is that if the core

L 2

9
~
o

area is doubled the input fluxes must be doubled to obtain (b)
identical system dynamics. Fig. 1. (a) Fiber amplifier equivalent circuit and (b) equivalent circuit
of an optical lossL. Input sources are independent current generators.
The controlled generators arecs = current-controlled current source;
lll. EQUIVALENT ELECTRIC CIRCUIT MODEL meces = multicontrolled current source.

We know by (5) that the derivative of exists, hencer
is a continuous function of, even when the input$Q¥} IV. GAIN SPREAD

are discontinuous. Just as the charge on a capacitor cannqiqation (3) shows that the log-gains of all channels at all
change instantaneously, the reservoir is similarly constraingges+ are linear functions of the (normalized) reserveir
Note also that (5) has a nice physical meaning: the variation

of the reservoir (the “charge” on the amplifier) is given by the
total input flux 3" @i, minus the output flu$> > Q™
minus the spontaneous decay from the excited level.
Hence by identifying photon fluxes with currents, and thg we fix a specific choice of cross sectioa$()\), o#()), and
reservoir with the charge on a capacitor, or better yet wiglot the quantity{c”(\)z — ¢*()\)} as a function ofzr, we

the voltage across a capacitor of capacity= 1, we get the find that forz < 0.35, all log-gains are negative, while all
equivalent electric circuit depicted in Fig. 1(a). log-gains are positive far > 0.45. A minimum spread point

The circuit is composed ofV input current sources (thennearz = 0.78 is clearly visible.
channels) and of a pump channel “0,” hidden inside the The dB-gain is linearly dependent on the mean fraction
amplifier. The currents feed the capacitor, whose voltageds excited ionsz, i.e., for a specific choice of amplifier
the reservoir. The currents ouf9" = Qine%/ ") are current parameters, we note again that the gains have minimum spread
generators controlled by voltageand currenQij“. The output of about 0.6 dB forz near 0.78. Asz moves away from such
pump current is shunted to ground and does not exit thalue, the gain spread becomes larger. This view of the linear
amplifier. The RC constant of the capacitive circuit7is dependence of the gains on the system state is of paramount
However this is an active circuit, and it is clear that th@mportance, as we will see in the following sections.
actual time constants involved in the dynamics are essentially
independent ofr.

The circuit model for a subsequent logsis shown in
Fig. 1(b). It is a bank of current-controlled current generators Once the initial conditionz, is given, we have seen that
that shunt part of the output photons to ground, effectivethe solution to (7) is unique. What happens if we artificially
wasting them. Using these building blocks for the amplifiestart the stater, outside the allowed range [0, 1]? What are
and the loss, a complex network of amplifiers can be solvéite minimum and maximum values af actually reachable
by any electric circuit simulator available on the market. Thisy starting the system at equilibrium and by using proper
is perhaps the most immediate practical application of odriving signaIsQ}“(t)? Such questions naturally arise when
system view. implementing the electric equivalent circuit.

Gi(t) = pLly (o} z(t) — of).

V. REACHABILITY
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1) Upper Limit: Suppose we start the systemaat > 1. reservoir valuer®® is found from (6) as the solution to
ThenVj, ofzo — 0f > o] —of = o5 > 0, and the gain N
of every channglj is positive, i.e., aII.channeIs are gaining " _ Qp (1 _ GBM,SS_AP) I Z Qn (1 _ ij,,ss_Aj)'
photons. Thusy j, V Q™ we have[1-¢%/(9)] < 0 so that from T =
(7) we havez(0) < 0, i.e., the reservoir must be supplying (12)
the required photons and is thus discharging. Now we determine the limiting value ef® when@,, — oo,
The reservoir can only cease discharging when at least assuming such a limit exists. Takeng, ... of both sides of
of the gains becomes negative. This happens for the pump fi(4t1). A necessary and sufficient condition for the RHS to be
which is the one providing gain to the channels in norméihite is limg, ... B,r** — A, = 0 which implies

conditions. Hence, certainly(t) < 0 until o'z — 0% < 0,

§2 a

Ap _ 9p

i.e., until lim »% == = — rp. 12
Qp—>oo Bp 0';1; M ( )
< a0y 1 The log-gain values for infinite pump are therefore
rSs Ty = oo + g€
b b

(8) Jim G = Bjﬁ — Aj = pLL; <a,T I _ a,@> (13)

i T J
B, o

which is thus an upper bound on the maximum achievatile | icp, s 4 generalization to the multibeam case of the so

The actual maximum value of, for a given set of iNput 104 infinite-pumpsmall-signal gainscalculated by Habbab
fluxes{Q;"}, at which the derivative:(t) can be zero must be o o (6] for a single channel. It is clear that an infinite pump
a solution of Saleh’s (6). Its maximum value over all possible .\ ¢ any finite beam&i} look like small signals. For a
||jputs{Q;.“}, for a g'YeT‘ finite pumpy, is f_ound by taking strong pump, Habbab’s Iir:ear approximation tends to be more
lim QF — 0 for all j, i.e, as the small signal steady-statg.cyrate ({6, Figs. 4-6]), and in the infinite pump limit it is
value z5°(Qp) satisfying (6) exact, since the gains, as seen in (13), do not depend on the
signal input power.

T .58

-TSS(Qp) — T& {1 _ CPLFP[UP Ty (Qp)—c'ﬁ}_ (9)

M VIl. GAIN DYNAMICS: STEP RESPONSE
The maximum value of:3°((p) is found letting@, — oo. Suppose we have a single amplifier, described by (5). At
Sincez is bounded, from (9) we must hade- ¢“» — 0 as time ¢ = 0~ (i.e., an instant before time 0) we are given the
Q, — oo. Hence initial valuer(0) and the input{Q@%*(0~)}.° The system need

a not be at steady state at= 0—. At time ¢ = 0T each input
lim z3°(Q,) = p (10) flux undergoes a discontinuity and then remains constant for
Qp—o0 o} all t >0

i.e., zy is achieved asymptotically for infinite pump. () = QN0 +AQF  j=0,---,N. (14)

2) Lower Limit: Suppose we start the systemaat < 0.
Then Vv j, o—fa:o — 0} < —o% < 0, and the gain of every
channelj is negative, i.e., all channels are losing photons. o r(0) N . @5(0)

ThusV j, V Qi* we have[l — ¢%/(”)] > 0 so that from (7) we #(07) = -t Z Q50 )[1 —c } (15)
have #(0) > 0, and the reservoir is charging. The reservoir =0

will not cease charging until (at least(t) = 0, at which where G;(0) = B;r(0) — A;, and att = 0T gives

point the derivative could change sign. The lowest achievable N

value ofz is trivially zero, obtained when no beam is present ‘ : _

ot ir?jputz. y P H0*) =7(07) + Y AQY [1-e9©@]. @)

In summary, the reachable range ©fis [0, zy]. If the =0
amplifier is pumped but the input signals are not present,For small values of, we can approximate the actual solution
the (normalized) reservoir fills up to its rightmost limit. of (5) with a straight line
As soon as signal fluxes arrive, the reservoir starts depleting, ~ .

x starts decreasing, and it will decrease down to its steady r(t) = r(0) +7(0)t. (17)

state leftmost value if the input signals eventually settle topore generally, we can differentiate (b)— 1 times and find

limiting continuous-wave (CW) value. the derivatives at time zer@ /dt*)r(01), i =1, ---, n, and
approximater(t) with its truncated Taylor series ih= 0

Then (5) att = 0~ gives

VI. STEADY-STATE ASYMPTOTIC VALUES t

B2y —r(0M)=.
Consider a single fiber amplifier, with CW input fluxes () ; 8t27( )i!
ij“,j = 1,---,N, and pump flux@,. The steady-state

(18)

One problem with such polynomial approximationg at 0
IMore generally we should write < maxy;;{o?/07}. is that they fail to converge to the actual solution for cc.

2We are neglecting the thermally induced ion excitation. 3Note thatr(01) = r(0~) sincer(0) exists.
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A reasonable compromise between accuracy neat 0 x 10"
and asymptotic convergence is obtained by the exponentidl® ! ! § } ! } ! !
approximation 15 ' : : ; ;

r(t) & 7°°(00) + [1(0) — r** (c0)]e /™ (19)

Reservoir
-
Py

where r**(c0) is the steady state value of (approached 13
asymptotically fort — oo) with the new input fluxes (14), , : .
andr, is the exponential time constant. To get accuracy neat?s 20 a6 e 8 100 120 140 160 180
t = 0 we impose that.(01) = #(0%), i.e., the derivative of time (us)

the approximation matches that of the actual solution at time (@)

t = 0*. We have from (19)y(0%) = —[r(0) — r**(00)] /7, 10
so that we find the time constant

7,55(00) _ 7(0)
Moty

Te =

(20)

power excursion (dB)

-5

The exponential approximation gives a better model g) , : , : : : ; ;
describe the gain dynamics for longer time scales with respecf® 20 40 e 8 100 120 140 160 180
to the polynomial approximations. It gives a good description time (us)
of the transients in a circuit switching scenario, with channels (b)
being added/dropped dynamically. Such an approximation trig 2. Time evolution of (a) reservoir and (b) output power excursion for
been Suggested in [3]’ but an explicit expression for th;érviving channellwith channel2undergoing step_varigtioms:aO.Solid:

. . . Exact solution of (5). Dashed: Exponential approximation.
exponential time constant was missing. It has been shown
in [3] that the exponential approximation is indeed closer to
the experimentally measured valuerdgt). Appendix A gives — 25*™° , . : 5 T
an analytical justification of the exponential approximation, , ‘ ; ; : '
corroborating the results in [4]. -

As a numerical example, consider a case very similar §)1'5
the one presented in [1]. The amplifier has two input channeis '
A1 = 15524 nm and Ay = 1557.9 nm, with initial input  os e : ;
powers P, = —2 dBm andP, = —2 + 10Log,,(7) dBm, i i i ; ;
simulating the remaining seven channels of an eight-channel ° 200 R R 1000 1200
system with—2 dBm/channel. The amplifier is pumped at 980 @
nm, with pump power 18.4 dBm, and has= 35 m, 7 = 10.5
ms. The absorption coefficients are [0.257, 0.145, 0.125} m 40 ; ! ! I :
and the intrinsic saturation powers are [0.440, 0.197, 0.214], : ; ; :
mW at [980, 1552.4, 1557.9] nm, respectively. The systemgs
at equilibrium before = 0. Attime ¢ = 0 part of the power on ¢ © : : : , _
channel 2 is dropped, simulating the drop of a given number, | ~5,: -+ ' & |
of channels. : ' ' : '

Fig. 2(a) shows the reservoir dynamlcs fpr the exact solutlomoo s o - o pros 200
of (5) and for the exponential approximation (19), for power time (us)
variations in channel 2 simulating the drop of four and seven (b)

Channels’ and the addition of S_even channels, respectl\/_g%: 3. Numerical solution of (5) giving the system time evolution, with
Fig. 2(b) shows the corresponding output power excursi@tmp turned on at = 0: (a) reservoir; (b) gains at [980, 1552.4, and 1557.9]
on channel 1, defined a®) Log,,[Q$"!(¢)/Q¢*(0)]. This nm.

figure matches very well with [1, Fig. 1]. The exponential

approximation for the reservoir is always below the actughotons/s, to invert the whole ion population in a one-to-one
solution, and larger errors are obtained for larger power dropsocess. This also justifies the observed nearly linear increase

As another example of step response, consider in Fig. 3 thethe reservoir. Note that the exponential approximation is
turn-on dynamics of the previous amplifier, in which no beamccurate for low values and high values #%fwith poorest
is present beforeé = 0 and the pump is turned on at= 07. performance at the knee of the curve. This is not surprising,
From (20) we haver, = [r**(0c) — 7(0)]/Q,[1 — ¢%»®] =  as the time constant was chosen to give exact results=od
595 us. Since we have a strong pump and no signals amd¢ — oc.
att < 0, the steady state value is approximated by (12). This long time constant, as well as the ones relative to
Observing also that(0) = 0 and > (0) =~ ¢ (amplifier OFF), channel drops in the previous example, which are of the order
and tha’[ag/a}; = 1, we getr. = r)/Q,. This means that of 100 s, are connected to the long time required by the pump
the turn-on time is the time it takes the pump, providigg to refill the reservoir. One pump photon can at most excite one

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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ion, and thus it takes a strong pump flux to have a fast refill. 210"
On the other hand, the fast dynamics observed in the signal
add process are connected to the time it takes the added signal 1
to deplete the reservoir. One signal photon can “burn” many

excited ions in the stimulated avalanche process, and thus it
is sufficient to have a relatively weaker signal to have much

faster system dynamics.

n{op

128

reservoir r(t)

VIIl. STEP RESPONSE INAMPLIFIER

CHAINS: INITIAL POWER EXCURSION ey

In this section we apply our theory to the study of transient
gain dynamics in a chain of amplifiers in response to channel 1/ = L
dropping/adding in a circuit switching scenario, a case also time (usec)
studied in [2]. In Appendix B we further examine how the @
phenomenon of gain peaking can be predicted using the
simplified ODE in (5).

Consider a chain ofn identical fiber amplifiers, identical
interamplifier lossL;, and N + 1 beams at the chain input,

with CW fluxes @, - --, Qu for the signals, andyo 2 Qp
for the pump. As in Section VIII, at time= 07 the fluxes at
the input of the chain have a discontinuity, so that#for 0
(14) holds forj = 1,---, N. Such discontinuity propagates
instantly along the amplifier chafhEquations (15) and (16)
describe the derivative of reservoit(t) at each amplifier

¢ =1,---,m along the chain.
Let @;} be the flux of channejj at the input of theith : : _ : : :
amplifier. By definition,Qi* ; = Qi for all j, and Qi3 = Q, R T R

time {usec)

for all ¢ since the pump is restored at each amplifier. Let

gij 2 ¢Biri=4; pe the linear gain of channel at the ith
s ; s . Fig. 4. Numerical solution of (5) giving the time evolution along a chain of
ampllfler. Atthe Input of thenth ampllfler, we can thus write 20 amplifiers with one channel drop &t= 0: (a) reservoir and (b) output

for channely power of surviving channel. = amplifier index along the chain.

(b)

m—1
in __ in _ pin| Bj E ) ri—(m—1)(A;+In Ly
mj — QJ = Q |:6 J i=1 ( MA; :|

m—1
9ij
H L; with initial input power of 3 dBm/channel. The amplifiers are
=t (21) identical to those used in Section VII. The interamplifier loss
Equation (16) for thenth amp“ﬁer then becomes is Ly =10.32 dB. The system is at equi”brium befote= 0.
At time ¢ = 0 the 1557.7 nm channel is dropped completely.
Fig. 4(a) shows the time evolution of the reservoirs
(1 =gmi(0)).  7i(t),i=1,---, 20 along the chain, obtained by numerically
solving (5) for each amplifier. It can be seen that, in this
_ o (22) jinitially well-balanced chain, the initial slopes of all reservoirs
If the system is started at equilibrium,((07) = 0), gare very close in value confirming (23). The first amplifier
and if the gains of each channel are almost equal alopgseroir has a monotone increase, while all the following
the chaln,Avery close to the interamplifier loss and larggypiifiers have damped oscillations in their reservoirs.
Vi,9:;(0) = g;(0) = Ly > 1), then The new steady-state reservoir values quickly converge
A beyond the third amplifieri(> 3) to the asymptotic value
, L 7% = (A; +1n L;)/B; = 1.2039 x 10** determined by
Fm(07) = — ZAQ}H«%(O) (23) channel( 1, as deriv)e/d in (33) of Appendix B.
g=1 In the case just examined we have only one signal, and

. o - the convergence of the signal gain to the interamplifier loss
which shows that the slopg,,(01) of every reservoir in an . ‘ )

I N N - : is a regulating effect known as self-healing [11]. In the case
initially “balanced” chain is approximately equal to (23) for . . o
every amplifier of many signals, Appendix B shows that along an infinite

. . - %hain only one channel survives, whose gain adjusts to the
As a numerical example, consider a case very similar 1o o .
mferamphﬁer loss, while all the other channels are suppressed.

the one presented in [2]. The amplifier chain has 20 identical _.
o . Fig. 4(b) shows the output powers at channel 1 correspond-
amplifiers and two input channels at 1552.1 and 1557.7 nm L L
ing to the reservoirs in Fig. 4(a). A strong overshoot is visible

4We are neglecting the propagation delay of light in the fiber chain.  as the amplifier index increases.

m—1

9i;(0)
17

i+1

~
P (07) =7 (07) + > AQP [
j=1
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Fig. 6. Numerical solution of (5) giving the system time evolution with a
single pulsed input signal. (a) The graph shows signal and pump outputs
powers. (b) The graph shows the signal gain. Input signal powers are 0.5,
1, and 2 mW.

IX. DYNAMICS IN PACKET SWITCHING

In this section, we will illustrate the amplifier dynamics in
a packet switching environment. Bits on the signal channels
arrive in bursts, or packets, followed by lulls, i.e., periods of
source inactivity.

Assume we start at = 0 with the pump only. The first

Fig. 5. Time evolution of the dB power execution along a chain of 2packet reaching the amplifier will find a full reservoir, and

amplifiers on the surviving channel. (a) Long time scale and (b) short ti

scale.

The dB power excursion at theth amplifier on channed is
APSU (1) 2 10Log, (P (1) /P2 (0T)) [2]. We easily find

m,s m,s m,s

Pr(r)lu;( ) grn,s(t) rn 1 s H gzs t
Pt (0%) ~ gm,s(0) P::;“ls i 9is(0)

Using the linear approximation;(t) = r;(0) + 7;(0")¢ for

each reservoir and (3), we finally get the dB power excursi

at the mth amplifier as

m

By Y #i(0h)t

=1

APR(t) = 10L0g; o (e)

m,s

(24)

MAus enjoys the small-signal gain (13) if the pump is strong

enough. However, if the input packet power is high and its
duration is long, it will quickly start depleting the reservoir by
stimulated emission, thus causing a very fast power transient
across the packet. The last bits will experience a much lower
gain than the initial bits.

As a numerical example, consider a case similar to the one
presented in [12]. The amplifier is pumped at 1480 nm, with
pump power 36 mW, and has = 100 m, 7 = 12 ms. There
is one pulsed input channel & = 1535 nm, with peak
input pulse power varied from 0.5 to 2 mW. The absorption
cross sections are [7.9, 1.6 1072° m? and the emission

on

cross sections are [0.35, 1.¥]10~2°> m? at [1480, 1535] nm,
respectively. The system is at equilibrium befgre- 0. At
time ¢t = 0.5 us a pulse of duration Ls arrives on channel 1.

We can clearly observe in Fig. 6 the power sag across the
output packet caused by the fast depletion of the reservoir
by the pulse, and the gain decrease across the packet time. A

which shows the excursion grows (initially) linearly in timearger signal power gives more power sag. The pump power is
with slope proportional to the sum of the = 0T slopes also shown, but is barely visible in the Fig. 6; it also exhibits
of the reservoirs along the chain. As noted in [2], if thesa similar sag in power. Again, the important point is that the
are all equal, the slope of the excursion grows linearly witain dynamics can be extremely fast upon strong signal pulse
the amplifier index down the chain. Fig. 5(a) and (b) showarivals, due to the stimulated-emission avalanche depletion
the power excursion on the surviving channel relative to tld the reservoir.

example above, respectively, on a long time scale and a shorn passing, note that Ket al. [12] arrived at the same

time sclae.

results by solving the system of coupled differential equa-
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Fig. 7. Numerical solution of (5) giving the system time evolution with twdFig. 8.  Numerical solution of (5) giving the system time evolution with one
input pulsed channels of input power2 dBm each. Amplifier data are the input train of pulses of peak power2 dBm, pulse duratio,, = 170 ns,
same as in Fig. 2, but with length = 40 m. (a) shows pump and signals one pulse every two slots. Amplifier data are the same as in Fig. 7 where (a)
output powers and (b) shows the gain at the signal wavelengths. shows signal and pump output power and (b) shows the signal gain.

tions describing more accurately the amplifier dynamics. Thégss and less amplification, until the gain converges to its
considered also the effect of spontaneous emission noise, ‘alyinamic” steady-state value, with an average output power
their results match very well with our figures, indicating thadn the channels necessarily below the pump CW power.

saturation induced by ASE is not an issue here. Fig. 8 shows the gain dynamics starting at steady state for

Giving the reservoir enough time to refill will effectivelya train of pulses of peak input power2 dBm, pulse duration
restore the initial conditions, so that the next pulse will beha¥g, = 170 ns, repetition periodl,. = 21, (one pulse every
exactly as the one shown in Fig. 6. If however a packet arrivigo slots), and the same amplifier data as in Fig. 7. The first
before complete gain recovery (recall that the recovery timepsises have a strong power sag, but as the gain decreases,
slow, since it is connected to the one-to-one inversion procesy)psequent pulses experience less gain, and thus the tilt on the
it will experience less initial gain, and thus less power se@fin decreases, to essentially vanish at dynamic equilibrium
shows across the output packet power. in this case of “short” pulses.

As another example, consider the amplifier with two chan- Fig. 9 shows that flat gain at equilibrium is not always
nels used to generate Fig. 2, but with length increased Reesent, and that the packet duration is the discriminating
L = 40 m. As shown in Fig. 7, two pulsed input channel®arameter. While for short packets, e.g., ATM cells at 2.5
of peak input power-2 dBm each feed the amplifier, initially Gb/s, the residual power sag at dynamic equilibrium is less
at steady state without input signals. Pulses have a duratfhan 0.5 dB, for longer packets of durati@p = 2.83 s, e.g.,
of 170 ns, corresponding to an asynchronous transfer md¥eM cells at 150 Mb/s, the residual power sag at dynamic
(ATM) cell of 424 bits at 2.5 Gb/s. The first pulse (packet§auilibrium can be more than 3 dB. Note that to speedup the
arrives on channel 1 and starts depleting the reservoir. WHa#merical computations and observe the solution of (5) close
the next pulse on channel 2 arrives and overlaps the fifgtdynamic equilibrium when a pulse train of peak powr
pulse, the reservoir depletes faster, and the gain and pofefeeding the amplifier, we start with '2'“6“ conditiom0)
curves become steeper. When the overlapping ends at the thd from (6) with CW input signa®), = (1,,/1,)Qs.
of the first pulse, the slope relaxes, since less reservoir ions gelt is now interesting to find, for a given cell durati@j, how

burned per second. When the next pulses arrive, the reserypi gain swing varies with the repetition frequerﬁ;yﬁ 1/T;.
has not had time to recover. Actually, the reservoir barelo et al., have experimentally measured such curves for 100
started refilling, as seen by the slight increase of the gaig duration pulses ([12, Fig. 6]), but the gain swing for such
between pulses. short pulses is not noticeable. Solving (5) numerically for a
The pump power of 69 mW (18.4 dBm) is barely visibldarge set of repetition frequencies is a long task. In Appendix
at the top of Fig. 7. The output power of the first pulseS we resort to the exponential approximation (19) to find the
ranges between 2 and 3 W, as should not be surprisingin sag across the cell as a function of the repetition rate.
The effect is very similar to Q-switching [13]. Such pulse$)sing the algorithm in Appendix C, we obtain the upper and
find the reservoir completely filled, and thus experience thewer valuesGy and G, of the dB-gain, shown in Fig. 10
small-signal gain. As subsequent pulses arrive, they will gegrsus cell repetition rat&,., for (a) ATM cells at 2.5 Gb/s
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Fig. 9. Numerical solution of (5) giving the system time evolution at dynamic equilibrium. One input train of cells of peak input-p2vaBm, one
cell every 20 slots. (a) ATM cells at 2.5 Gb/s and (b) ATM cells at 150 Mb/s. Amplifier data is the same as in Fig. 7. The top graphs show signal
and pump output power and the bottom graphs show the signal gain.
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Fig. 10. Upper and lower value§,;, and G, of dB-gain across cells versus cell repetition rdte. (a) ATM cells at 2.5 Gb/s and (b) ATM cells at
150 Mb/s. Pump power 18.4 dBm, signal peak input power dBm.

and (b) ATM cells at 150 Mb/s. The pump power is 18.4 dBnulls, give the amplifier enough time to recover. We conclude
and the signal peak input power i2 dBm. this section by showing in Fig. 11 the effect of such lulls in
At low repetition rates the gain sag across the cell &n eight-channel system feeding an amplifier, with channels
larger. The asymptotic value foR,, — 0 is found easily, at wavelengths from 1538 to 1560 nm, with 2 nm spacing.
by considering that in such case the reservoir has time The amplifier has the same parameters as in Section IV. Each
completely recover after each pulse. HenGeg; tends to the channel; is carrying a periodic train of ATM cells of repetition
small-signal gain(7;, tends to the gain value observed in atime 7,.(5). The bit rate in the cells is 150 Mb/s. All channels
isolated pulse, and is lower for longer pulse duration. Alsare aligned to the slot time at the input of the amplifier. We
shown in the figure is the average power analysis, i.e., a steagtart the reservoir close to dynamic equilibrium, obtained by
state gain analysis using (6), assuming a CW input signal the average power analysis. All eight channels start at the first
flux Q. We note that upper and lower gain values converge stot at time “0” with a cell.
the average power analysis value as the repetition frequencyVe chose the repetition times of the trains on the channels
is increased. As already observed, for ATM cells at 150 Mbfs be 9, 10, 12, 15, 18, 20, 30, and 36 slots, respectively,
the gain sag can be as extreme as 6 dB for low repetition rates. that after 180 slot times (the least common multiple of
So far we have learned that gain dynamics can give lartfee repetition times) all eight trains have again overlapping
power swings across the cells if long cell interarrival times, aells. This scheme artificially creates periodic lulls after each
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0120 ! { ]‘ 1 ! 1 I , . The present analysis is based on the assumptions of the
: ; : ‘ ‘ ‘ : LS ASeeREt SR 4+ model in [1] and [5], which neglects both excited state ab-
w44 sorption and saturation induced by the amplified spontaneous

goos Al ‘ll‘ I | n.lll ..... I emission (ASE) produced inside the amplifier. There are

&004 || || || H | |” H l | ” | H l | “l” ,,,,, H several ways to include such ASE contributions in the model

0002 ll I !{ !! || ! H! |l | ! H ” || ! ! !HH ” [8], [9], and future work will address this issue. However, the
i it

III-h-lllllllllllllllllllllllIlll!!llllﬂlll!lllll!lllllllllllllmlllIIIIIIIllllIlIIIIIII Tt main findings of the present work will be valid as long as the
180 200 220 240 260 280 300 320 340 360 380
time (slot)

signal powers are large and the main contribution to amplifier

saturation.
(@
B ! ! ! ! ! ! 5 ! ! APPENDIX A
2 ; ' j : ' ' : : EXPONENTIAL APPROXIMATION: DERIVATION
A21 . - . .
5?,20 Y In Section VII, we gave an exponential approximation to
‘§19 the actual solution of (5) for step-like driving signals. To give

an analytical justification to the approximation, we rewrite (5)
by adding and subtracting(0) in the log-gain exponent so

17 H H { H i i H 1 i 1
180 200 220 240 260 280 300 320 340 a3e0 380 that fort > 0
time (slot)

N
(b) ity = ~" 4 > Qinty {1 - el @-ademw-ro1},

Fig. 11. Numerical solution of (5), in the case of eight pulsed channels. T j=

Pulses are ATM cells at 150 Mb/s one slot is 2.8 and the pump is 18.4 (25)

dBm. The peak input power is2 dBm/channel. where (a) shows pump and
signal output powers and (b) shows the gain at the eight signal wavelengthgafine the deviation from’(O) asra é 7’(t) _ 7,(0). Now
expand the exponential term in (25) in a taylor series around

r(0)

coincidence slot, every 180 slot times, of duration given by the
smallest repetition time, in this case eight slots. The top graph

of Fig. 11 shows pump and signal output powers. Overlapping r(t) = - T - Z Qj
cells at different wavelengths are visible in the figure. The 7=0 .
bottom graph shows the gain at the eight signal wavelengths. ' <1 _ (B (0)=4)) Z g) (26)
X. CONCLUSIONS We can then write
In this paper, we further simplify the ODE for the doped- N
fiber amplifier gain dynamics reported in [1], bringing into7.,A P = _@ +Z Qip(k)[l _ ecj(O)]
greater evidence the physical meaning of the amplification J
process, and greatly enhancing the utility of the ODE as N
an analysis and design tool. We find that the doped-fiber 1 ~ _
amplifier dynamics are connected to the depletion and the = +Z Q1) OB | rA(t) +O(ra)
refill of the reservoir of excited ions in the amplifier. While
the refill process is mainly contributed by the pump, and is
a process in which one pump photon can at most excite one 7(0T) = | = + Z Q(t) eI O B rA() + O(rA)
ion, the depletion process is mainly caused by the signals,
and is an avalanche process connected to stimulated emission: (27)

one signal input photon can “burn” a very large number of
ereG;(0) = B;r(0) — A;, and O(rA) represents terms
excited ions in the reservoir. Thus, the time scales connec%gﬂmshmg faster thanA a57A — 0. If we neglect tha)(rA)

to the depletion process can be extremely fast, while thosa n
connected to the refill process are slow and depend on {ﬁéms and the drive 5|gnat$g (¢) are time- mdepend_ent _for
pump power and the total number of dopant ions. In arf)? 0, then (27) becomes a linear ODE whose solution is
case, the amplifier dynamics are essentially independent of ro(t) = 1(0) +T€7‘,(0+)(1 _ e—t/fe) (28)
the fluorescence time. An important consequence of the above
is that channel addition causes much faster transients thdh time constant
channel dropping in WRON's. N -1

Perhaps the best scenario to observe the amplifier gain T, = 1 +Z Q}neGj(O) B;| . (29)
dynamics is in multichannel packet switching applications, T
where signals are kept at a high power level to avoid optica ) ) ) )
SNR degradations when multiple amplifiers must be crosszh'S time constant is also given in [4, eq. (28)].

before reaching destination. We have given figures of the gamRecaIImg our equwalent cichgt(O)rnodel, hote frgm (29)
swing across packets in such environment. that we can interpre§ _, Qj*c%/(VB; as an equivalent
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conductancey., which is in parallel withl/7 to give the 10 —— 7T
effective circuit conductancé/7. seen by the capacitor, the L
one determining the circuit dynamics. Once again, it is clear
that the system dynamics very weakly depend on the “resistor”
7, since this is in parallel to the usually much smaller resistor
1/geq.

Note that both approximation (19) and (28) give the correct
values for the derivative at time zero despite differing time
constants. However, only (19) gives the correct asymptotic
value of the reservoir in steady state. The exponential form
(28) is a good approximation for small valuesofwhile the
approximation in Section VIl extends to asymptotic values as
well.

Gain (dB)

0.1 02 0.3 0.4 05 06 0.7 08 0.8 1

APPEND|X B nomalized r = mean fraction ot excited ions

GAIN PEAKING IN AMPLIFIER CHAINS Fig. 12. Graphical determination of steady state (normalized) reservoir value

The gain spread in each amplifier along a chain of amplifie’r‘é‘é and surviving channelh along an infinite chain of interamplifier lods;.
leads togain peaking[10], i.e., to the fact that one channel
tends asymptotically to a fixed output power at the output of
each amplifier down the chain, while all other powers decreaeénstead we have? < (A; +1n Ly)/B;, then the limit of
and eventually disappear. Gain peaking is the dominant feattite exponent is-oo.
characterizing chains of fiber amplifiers, the one that has mosiThus, for interamplifier los4.;, the limit valuerZ; is given
impact on system performance. by, as shown in Fig. 12, the largest valuesouch that the

To derive gain peaking analytically, consider a chain d8g-gain of a specific channeh equals the interamplifier loss
described in Section VIII. Recall that in this analysis, wé L;, and the log-gain of all other channejsis less than
neglect ASE. Consider the next steady state after the poverL;. Only channekh survives in the infinite chain, its gain
discontinuity. The reservoir of thesth amplifier satisfies (6) being equal to the loss, while all other channels vanish, having

gain lower than the loss. The limit value of the reservoir is

N
pi Z Qiﬁj (1 B ij”fvf_Aj) (30) found to be
=0 . . {Aj +1n LI}
) 755 = min —_—
m;(t — 00) is obtained from (21), giving (31) shown at the =1, N} B; 33)

bottom of the page.
Now we look for the limit value ofr?° asm — oo. and the surviving channeth is the one that achieves the
Suppose such a value exists, and denote it agnimum.

rss 2 lim,, oo 725, It is easy to show that under this

o>
assumption lim,,, . (1/m) > % 7% = r35. Now take APPENDIX C

1=1"

limy;, o of both sides of (31). Consider the limit of the s Appendix derives the approximate dynamic equilib-
exponent on the right-hand side (RHS) rium extremum values of the reservoir when the amplifier is

iy pumped by a CW pump with flug), and is fed by a signal
27’55 pulse train of pulse duratiofi,, repetition timeZ,., and peak

li _DI|BE= (A i+ L. input flux Q.

lim (m—1)|B; m—1 (4 +1n Lg) At dynamic equilibrium, the upper and lower values of the

reservoirry 2 r(ty) andrp, 2 r(tr,) are related to the pulse
o ~durationT}, and the idle time between pulsé$ = T, — T},
In order to get a finite value of the exponent for chanjiel as shown in Fig. 13. To find; andr;, at equilibrium we use

we need the following numeric algorithm.

m—1 Start with an initial guessy = r27 (c0), whererZ? (oo)
. 1 A:+1In L . U avg YWHE avg
n}gréo — Z it =1l = % (32) is the steady state value found from (6) with input fluxgs
m =1 J and Q,.
PS8 Y . m—1
% =Qp(1 —eBrrm =) 4 Z Q0 ) exp <(m - 1){Bj Z r?/(m—=1)| — (4; + 1nL1)}> (1= Pirm=dd),
j=1 =1

(31)
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Fig. 13. Dynamic equilibrium.

1)

2)
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A The same algorithm can be applied using the linear ap-

proximation in (17) instead. The values obtained by the linear
approximation tend to converge to those obtained by the
exponential approximation for high repetition rates, although
the exponential approximation always gives values closer to
the actual ones.
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wherer;7 (o) is the steady state value found from (6)
with input fluxes@,, and @Q,. Then we set [10]

Ty /e (U) [11]

ri = (00) + [ (o0) = rule

Update the reservoir derivative ft using (15)

r(tL)
T

[12]

67) = - T | g, (1 operimn)
+ Qs(l - CBPTL_AP)

[13]

since both@, and @, are present at; .
From (16), we get

H(th) = (i) = Qu(1 = ™7 )
since @, is the only channel with step variation@,
att = tf.

In the exponential approximation of the gain dynamics,
from (20) we get
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ro = 1§ (00) + [ (00) = rile

Repeat 1)-6) untit;; andry converge.



