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Abstract

This paper provides a detailed analysis of transient gain dynamics in saturated Raman am
fed by wavelength division multiplexed (WDM) signals. Such dynamics are due to a pump satu
effect, known as pump-mediated signal-to-signal crosstalk, which is equivalent to the well-k
cross-gain modulation in EDFAs. We provide for the first time a simple block-diagram model
Raman amplifier, whosestateis represented by therelative pumps depletionsensed by the signal
With such model, we are able to prove that the time constants of the Raman gain transients a
same order as the pump–signal walk-off times. For counter-propagating pumps, the model
accurate in predicting both the steady-state gain and the transient gain dynamics, with more
order of magnitude improvement in computation time with respect to the direct solution of the s
and pumps propagation equations. The value of such model is therefore in the simulation of d
WDM networking scenarios in which the input powers have large swings in time. The mode
extends to the co-propagating pump and well captures the time constants involved in the tra
although the accuracy in the predicted power levels is worse than that of the counter-prop
pump case.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

Transient gain dynamics in saturated doped-fiber amplifiers have been studied
sively in connection with sudden channel addition or removal in wavelength div
multiplexed (WDM) systems caused by either unintentional failures, or by deliberat
work reconfigurations [1,2]. The main concern is the duration of the power trans
which may induce temporary performance degradation, and the amount of power s
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1068-5200/$ – see front matter 2003 Elsevier Inc. All rights reserved.
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which may damage the optical components and cause system disruption. Such tra
are connected to the population dynamics of the dopant ions, and can be much fas
the ions relaxation time, depending on the signals saturating power [2–4].

Surprisingly, such gain transients have recently been experimentally observed e
counter-pumped single-channel saturated Raman amplifiers [5], although no ions
volved in the amplification process. The reason is that the strong power of the signal l
edge depletes the injected pump, and thus the main body of the signal pulse does n
the same high gain as the signal front. Such transients can be numerically reprodu
solving the coupled time-dependent propagation equations for signals and pumps,
connected to the signal–pump walk-off [5]. Simulation and experimental results with
WDM channels and multiple counter-propagating pumps were also reported in [6].

In this paper, we first show that the gain dynamics in the single counter-pumpe
man amplifier can be accurately predicted by determining the time behavior of a
state variable, namely, the relative pump change sensed by the signals. Such state-
model provides dramatic savings in transients computation times with respect to the
plete propagation model, larger savings being connected to larger WDM channels
The state model is similar to the state model for erbium doped fiber amplifiers (EDFA
and is thus amenable to a simple block-diagram implementation, which makes it attr
for block-oriented optical network simulators [7]. Next, we extend the model to the ca
multiple counter-propagating pumps, and we show that it accurately predicts the dyn
of practical wide-band Raman amplifiers. Since the multi-pump model makes a fund
tal distinction between signals and pumps, when such distinction gets blurred, suc
resonant pumping, the accuracy of the model is reduced, and we quantify such redu

It is known that transient gain dynamics are present also in co-pumped Rama
plifiers, with transients occurring on a much faster time scale than in counter-pu
amplifiers [6,8]. We develop here a state-variable model also for the co-pumped
which we use to predict the time constants of the transients. However, our model st
relies on the peculiar feature that the pump-saturating signal power abruptly inc
towards the amplifier output, which is true for most counter-pumped amplifiers, a
only an approximation for co-pumped amplifiers. Hence the model is less accura
co-pumped amplifiers, although the time constants are correctly reproduced.1

This paper is organized as follows. In Section 2 we introduce the propagation equ
and provide their formal implicit solution under specified simplifying assumptions. In
tion 3 we derive the model for the single counter-propagating pump case. In Section
test the accuracy of the model with respect to the exact solution, and explore severa
ples of gain dynamics. We then study the steady-state equation and provide a linea
of the model in order to obtain explicit expressions for the time constants involved
transients. In Section 5 we explain how to include pump relative intensity noise int
model. Section 6 deals with the extension of the model to the multiple pump case,
Section 7 provides its numerical validation. Finally, Section 8 tackles the co-propag
pump case.

1 Some discrete Raman amplifiers use a combination of different fibers to achieve a more complex gai
profile even in the counter-pumped configuration. The accuracy in such case might be reduced as well.
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2. Propagation equations

AssumeN WDM signals, at wavelengthsλj , j = 1, . . . ,N , propagate along a fiber
the same group velocityυs , and a single pump at a shorter wavelengthλp propagates a
velocityυp.

By casting the propagation equations [9] in the signals and pumpretarded time frames

ts
�= t − z/υs andtp

�= t − z/υp, one gets

∂

∂z
P (tp, z)= ±

[
αp +

N∑
j=1

ĉjpSj (tp − dz, z)

]
P(tp, z),

∂

∂z
Sj (ts , z)=

[
−αj + cjpP (ts + dz, z)+

N∑
i=1

cjiSi(ts, z)

]
Sj (ts, z),

j = 1, . . . ,N, (1)

whereP(t, z) andSj (t, z) are the pump and signal powers [W] at timet and coordinatez;

αp andαj is the attenuation of pump and signals, respectively;d
�= (1/υs − 1/υp) is the

walk-off parameter; the coefficientcji
�= γji if λj > λi andcji

�= −γjiλi/λj if λj < λi ,
whereγji = γij > 0 is the Raman gain efficiency coefficient [W−1 km−1] between wave-

lengthsλi andλj ; and finallyĉjp
�= −cpj , which is a positive quantity for all signalsj .

The top sign in the± symbol in the first equation refers to the counter-propaga
pump, for whichυp < 0, while the lower sign to the co-propagating pump, for wh
υp > 0. In the above equations we neglected spontaneous Raman scattering, and R
backscattering. The summation term in the signal propagation equation accounts
direct signal to signal Raman crosstalk.

The formal solution of (1) can be obtained by separating the variables and integ
from the input coordinate (zis for signals andzip for pump) to the output coordinate (zos

for signals andzop for pump) as


P(tp, zop)= P(tp, zip)exp
{±[αp(zop − zip)

+∑N
j=1 ĉjp

∫ zop
zip

Sj (tp − d z, z) dz
]}
,

S(ts , zos)= S(ts , zis)exp
{−αj (zos− zis)+ cjp

∫ zos
zis

P(ts + dz, z) dz

+∑N
i=1 cji

∫ zos
zis

Si(ts, z) dz
}
.

(2)

To make the analysis tractable, in the following we will neglect the direct signal-to-s
Raman crosstalk in the Raman amplifier. While in most discrete Raman amplifiers
crosstalk is negligible, since the signal powers rise to large values only close to the o
in distributed Raman amplifiers most direct signal-to-signal Raman crosstalk occurs
first kilometers of the transmission fiber, where no amplification is present. Hence
crosstalk can be easily accounted for analytically using well known methods [10]
then the modified input can be used in our simplified model.
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3. Counter-propagating pump

In this case the pump is injected atzip = L, and the signals enter atzis = 0, whereL is
the fiber length, and we assume thatυp = −υs , so thatd = 2/υs . From (2), the solution o
the simplified propagation equations for the counter-propagating pump case at coo
zop = zos= z� L is{

Sj (ts, z)= S in
j (ts )exp

{−αjz+ cjp
∫ z

0 P(ts + dz′, z′) dz′},
P (tp, z)= P0e

−αp(L−z)e−Γ (tp,z),
(3)

whereP0
�= P(tp,L) is the constant injected pump power,S in

j (ts )
�= Sj (ts ,0) is the input

signal waveform, and

Γ (tp, z)
�=

N∑
j=1

ĉjp

L∫
z

Sj (tp − dz′, z′) dz′ (4)

is a quantity defined in the pump retarded frame. For moderate pump depletion
Γ < 0.3, we can approximate

e−Γ ∼= 1− Γ, (5)

with an error below 5% (i.e., below 0.2 dB), so that from the second of (3) we

P(tp, z) ∼= P (z)(1 − Γ (tp, z)), whereP(z)
�= P0e

−αp(L−z) is the undepleted pump pro
file, and thus

Γ (tp, z)∼= �P(tp, z)

P (z)
, (6)

where�P(tp, z)
�= P(z)−P(tp, z), so that wephysically interpretΓ as the relative pump

variation caused by saturation, measured in the pump retarded time frame at coordinz.
Using thekey approximation(5), the integral term in the signal equation in (3) becom

cjp

z∫
0

P(ts + dz′, z′) dz′ = gj (z)
(
1− x(ts, z)

)
, (7)

where we defined

gj (z)

�= (e−αpL(eαpz − 1))
cjpP0
αp

,

x(ts, z)
�= cjpP0

gj (z)

∫ z
0 e

−αp(L−z′)Γ (ts + dz′, z′) dz′.
(8)

The first row defines the undepleted on-offlogarithmic gaingj (z), while the undepleted
gain vsz profile is [11]

Gj(z)= exp
(−αj z+ gj (z)

)
. (9)

The second definition in (8) can be interpreted as follows. Once (7) is plugged in (
get the signal power atz as

Sj (ts, z)= S in
j (ts )exp

{−αj z+ gj (z)
(
1− x(ts, z)

)}
, (10)
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and since the term(1 − x(ts, z)) multiplies the injected pumpP0 hidden ingj (z), we see
that x(ts, z) physically represents the relative pump depletion sensed by the signal
retarded time frame at coordinatez.

Now let x(ts)
�= x(ts,L) be the depletion at the output, andgj

�= gj (L), so that the
output signals can be written as

Sout
j (ts )

�= Sj (ts ,L)= S in
j (ts)exp

{−αjL+ gj
(
1− x(ts)

)}
, (11)

and from (8) one can write

x(ts)= 1

Lp

L∫
0

e−αp(L−z)Γ (ts + dz, z) dz, (12)

being

gj

cjpP0
= 1

P0

L∫
0

P(z) dz= (1− e−αpL)/αp
�= Lp

the effective fiber length atλp . Using (6) in (12) we also get another physical interpreta
of x,

x(ts)=
∫ L

0 �P(ts + dz, z) dz∫ L
0 P (z) dz

, (13)

which clarifies by comparison with (6) the similarity betweenx andΓ : x is the relative
integrated pump variation, measured in the signals retarded time frame.

We now use (12) to determine the time evolution ofx(ts). Oncex(ts) is known, the time
evolution of all the output signals is immediately obtained through (11). We use (10) i
and plug the result in (12) to get

x(ts)= 1

Lp

N∑
j=1

ĉjp

L∫
0

e−αp(L−z1)

{ L∫
z1

S in
j

(
ts + d(z1 − z2)

)

×Gj(z2)exp
[−gj (z2)x

(
ts + d(z1 − z2), z2

)]
dz2

}
dz1. (14)

Such equation is quite complex, but it can be drastically simplified by recalling tha
Gj(z) profile very sharply arises in the last few meters of the Raman amplifier, so th
can use the termGj(z2)exp[−gjx(ts + d(z1 − z2),L)] instead of the exact saturated ga
Gj(z2)exp[−gj (z2)x(ts + d(z1 − z2), z2)] in the above integral:

x(ts)∼= 1

Lp

N∑
j=1

ĉjp

L∫
0

e−αp(L−z1)

{ L∫
z1

S in
j

(
ts − d(z2 − z1)

)

× exp
[−gjx

(
ts − d(z2 − z1)

)]
Gj (z2) dz2

}
dz1. (15)
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What we gain is that now we have an integral equation in the only unknownx(ts). We
solve it by making the following change of integration variables:τ = d(z2 − z1); z′ = z1.
After the change, by dividing and multiplying byGj (L), one finally gets

x(ts)=
N∑
j=1

dL∫
0

S in
j (ts − τ )e[−αjL+gj [1−x(ts−τ )]]

× ĉjp

dLpGj (L)

( L−τ/d∫
0

e−αp(L−z′)Gj (z
′ + τ/d) dz′

)
dτ,

where the integration is easily recognized as a convolution operation. Hence, th
variablex(ts) approximately satisfies the following implicit integral equation

x(ts)=
N∑
j=1

Sout
j

(
ts , x(ts)

)⊗ hj (ts), (16)

whereSout
j (ts , x(ts)) is given in (11), the symbol⊗ denotes convolution, andhj is the

impulse response of a linear filter:

hj (t)= ĉjp

dLpGj (L)

[ L−t/d∫
0

e−αp(L−z′)Gj

(
z′ + t

d

)
dz′
]
Π

(
t − dL/2

dL

)
, (17)

whereGj(z) is the undepleted gain-versus-z profile (9), andΠ(x)= 1 for −0.5< x < 0.5
and zero else. In Appendix A, a closed form of the impulse response (17) is provided
with its exponential approximation for distributed Raman amplifiers (A.3).

The fundamental equation (16) can be solved recursively, by performing the num
convolution on the right hand side, and updatingx(ts) as the average between its old va
and its new value obtained from the convolution, in order to smooth out the (pos
large fluctuations from one convolution to the next. Convergence to the final solut
usually obtained within some tens of iterations, a number that increases with the a
of amplifier saturation.

3.1. Numerical verifications

We tested the accuracy of our state-variable model against the exact solution
propagation equations, starting from the experimental setup used in [5]. The input
was a single-wavelength sequence of two contiguous packets of duration 400 µs
the first with power 1 mW and the second 0.1 mW, enteringL = 14 km of dispersion
compensating fiber (DCF) at timet = 0.2 In the model, we usedαj = 0.46 dB/km, αp =
0.6 dB/km,cjp = 2 [W−1 km−1], corresponding to a dispersion compensating fiber (D
with signal wavelengthλj = 1545.3 nm, and pump wavelengthλp = 1454.7 nm [5].

2 Another interpretation of the same input sequence may be the following: at timet = 0, 10 channels (on
very closely spaced wavelengths) having 0.1 mW power each are fed to an initially unsaturated Raman ampl
while at time 400 µs nine out of ten channels are dropped.
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Fig. 1. (Left) Relative pump change sensed by the signal, and (right) output signal power, for increasing l
pump powerP0 = 0.64,0.70,0.77,0.86,0.97 W. Solid lines: exact solution (1); dashed lines: model (16). In
signal shown (right) magnified 50 times.

Figure 1 shows the relative pump changex(t) (left) and the output signal powe
Sout
j (t) (right) in the absolute time framet = ts (0), calculated as in (16), (11) (dash

lines), and the exact numerical solution of the propagation equations (1) (solid l
Five different curves are reported in each sub-figure, obtained for pump powersP0 =
0.64,0.70,0.77,0.86,0.97 W, corresponding to saturated gains of 20 to 24 dB, res
tively.3

In the figure, we first note that the effect of deep saturation is to alter the steady
power ratio between the first and the second pulse, starting from 1/10 in the linear regime
down to 2/3 atP0 = 0.97 W. We next note that the approximate solution (16) very w
reproduces the exact numerical solution as long asx < 0.3, the approximation becomin
worse when the linearizatione−Γ ∼= 1 − Γ fails, i.e.,Γ > 0.3. An analytical explanation
of this fact will be postponed to Section 4, Eq. (26). The time constants of the transien
somewhat faster than (but comparable to) the walk-off timedL= 140 µs, while the prop
agation delay within the amplifier isL/υs = 70 µs, whereυs = 2 × 108 m/s. A thorough
discussion of the time constants is postponed to Section 5. One notable differenc
transients in EDFAs is the presence of ringing in the step response even in a single
amplifier. Such ringing disappears at small pump powers, and will be further discus
Section 5.

As stated in the Introduction, one concern in the transients are the power surg
may damage the optical components. As seen in the figure, the power spike at the
leading edge can be many times the steady-state saturated value reached after the t
and can be quantified through thepower sagacross the pulse, which we define as

SAG
�= Sout

j (x = 0)

Sout
j (xss)

= egjx
ss
,

where ss denotes the steady state values reached after the transient, and we us
Hence the sag across the pulse becomes larger for increasing undepleted on/off gegj ,

3 At such very large signal powers propagating inside the Raman amplifier, Brillouin scattering, which
not include in our equations, is known to deeply affect propagation [17]. However, the reason of using su
large pump and saturated gain values is to test up to which level of pump depletionx the accuracy of the mode
(16) versus the exact solution of (1) is acceptable.
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Fig. 2. Pulse sag (19) versus total output signal powerPtot = ∑
i S

out
i (xss) for various types of fiber, DCF

NZDSF, SMF, having respectively Raman gaincjp = [2.0,0.46,0.31] [W−1 km−1], λj = 1545.3 nm, λp =
1454.7 nm, and pump attenuation[0.60,0.28,0.30] dB/km.

i.e., for increasing pumpP0, but also for increasing stead-state saturation

xss= c ·
∑

i S
out
i

P0
, (18)

where we haveconjecturedthat such steady state saturation increases linearly with
total signal power relative to the pump, a relation that will be shown to approximately
in the next section, where it will be shown thatc ∼= λj /λp , beingλj the average signa
wavelength. Hence from (8) and (18) we see that the pump powerP0 cancels out in the
exponent, so that the sag in dB is

SAGdB ∼= (10 log10e)
cjp

αp

λj

λp

∑
i

Sout
i (xss) (19)

from which we conclude that the power sag on a pulse depends on (i) thetotal output sig-
nal power; and (ii) on thefiber typethrough its Raman gain, and its pump loss. Figur
shows the power sag (19) versus total output signal powerPtot =∑

i S
out
i (xss) for various

fiber types. We note that for the DCF in our example, the sag exceeds 3 dB (large
tion effects) when the output signal power exceeds 50 mW, while it remains below
(negligible saturation effects) when the signal power is below 10 mW. A power large
100 mW is required to significantly saturate a Raman amplifier that uses SMF fiber.

The Raman saturated case is very similar to the case of saturated EDFAs. Startin
Eq. (6) in [4], one can prove that the power sag across a pulse in an EDFA is given b

SAGdB ∼= (10 log10e)Bj τ
∑
i

(
Sout
i (xss)− S in

i

)
, (20)

where the parameterBj and the fluorescence timeτ are defined in [4], and their product
proportional to the inverse of the intrinsic saturation powerS is

j = hνj /Bj τ [W] by the pho-
ton energyhνj . Therefore by similarity with such result, one may define for the satur
Raman amplifier theintrinsic saturation power atλj as

S is
j

�= λp

λj

αp

cjp
, (21)

and thus the previous result can be reworded by saying that the sag exceeds 3 dB w
total output power exceeds 3/(10 log10e)

∼= 0.7 times the intrinsic saturation power.
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Fig. 3. Example 2. (Left) Relative pump change sensed by the signal, and (right) output signals power, fo
powerP0 = 0.86 W. Solid lines: exact solution (1); dashed lines: model (16).

We next provide a second example in which several WDM signals are fed to the
discrete amplifier previously described. The input signals we used were three chan
wavelengths[1552.2,1552.6,1553.0]nm, each carrying a single packet of duration 800
and power 1 mW. The packet on channel 1 entered the amplifier at timet = 0, the one on
channel 2 entered att = 400 µs, and the one on channel 3 att = 600 µs. The injected
pump power wasP0 = 0.86 W, with signal Raman gainscjp = [2.1,2.0,2.0] W−1 km−1.
Figure 3 (left) shows the relative pump changex(t) and (right) the output signals powe
the exact solution (1) being in solid line, and the model (16) in dashed line. Again
reason why we used such large pump powers is to test the accuracy and the ra
applicability of the model. We note that the analytical solution very well matches wit
exact one. We can clearly see the effect of the pump-mediated signal to signal cro
the largest saturation occurring when all three packets are simultaneously presen
amplifier. Note that the effect of one packet lasts for about one walk-off timedL after its
end. Hence the “memory” of the system, i.e., itsgain recovery time, is slightly less than the
walk-off time in this example, and never exceedsdL. Such walk-off time plays in Rama
amplifiers the same role as the fluorescence time plays in EDFAs. This will be eviden
the discussion in Section 5.

Having established that the model well matches the simulations, we now wi
present more results of single-pump single-channel transients, in order to check s
ities and differences with the transients observed in EDFAs [4]. The discrete am
for the next examples consisted ofL = 10 km of DCF, with peak Raman gain coef
cient cmax = 3.2 W−1 km−1, Pump wavelengthλp = 1450 nm, and signal waveleng
λs = 1550 nm, with 1 mW peak input signal power.

We first illustrate the amplifier dynamics in a packet switching scenario. We start
examining the case of one input signal packet of duration 400 µs, which is much l
than the time response of the filterhj (t) in Eq. (11). In Fig. 4, dashed lines show t
dynamics of the relative pump depletionx(t), and of the amplified signalSout

j (t) when the
input pump power has amoderatevalue of pumpP0 = 200 mW. We note exponential-lik
transients which last around 100 µs, which are quite similar in nature to those obse
EDFAs [4]. We will show in Section 5 a simple formula for the transient time constan
thismoderate pumpcase.

If the pump power is increased to alargevaluePp = 400 mW, we note in Fig. 5, dashe
lines, that the time behavior ofx(t) and Sout(t) starts to show a resonance oversho
j
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Fig. 4. Time evolution of (left) relative pump depletion, and (right) output signal, in response to (dashed) a
packet of duration 400 µs; (solid) a train of pulses of durationTp = 20 µs and pulse separationTr = Tp . Input
pump powerP0 = 200 mW.

Fig. 5. Time evolution of (left) relative pump depletion, and (right) output signal, in response to (dashed) a
packet of duration 400 µs; (solid) a train of pulses of durationTp = 20 µs and pulse separationTr = Tp . Input
pump powerP0 = 400 mW.

which is not present in transients involving EDFAs [4]. Moreover, a larger pump im
larger signal-induced gain saturation, which justifies a larger power sag across the
packet. We already saw in Eq. (19) that the power sag across a pulse is directly propo
to the total signal power, which linearly increases with pump power. Such behav
different from saturation in EDFAs, Eq. (20), where the power sag is still proportion
the total output signal power, but such powersaturatesfor increasing pump power, sinc
the population inversion cannot exceed a maximum valuexss smaller than one [4].

Next, we examined the response of the amplifier to an input train of equally sp
pulses of fixed durationTp = 20 µs, a time much shorter than the time response of the
hj (t). The results are displayed in Figs. 4–6 in solid lines.

In Fig. 4 the gap between pulses isTr = Tp and the input pump power isP0 = 200 mW.
We note that the response to the first packet obviously coincides with the dashed-line
while the response to the following packets exceeds the dashed line, since the pu
fills in the lull between packets, with a time constant that we can infer from the up
transition of the dashed-line curve ofx(t). Physically, such pump refill is due to fres
back-propagating pump photons reaching the traveling signal pulse.
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Fig. 6. Time evolution of (left) relative pump depletion, and (right) output signal, in response to (dashed) a
packet of duration 400 µs; (solid) a train of pulses of durationTp = 20 µs and pulse separationTr = 3Tp . Input
pump powerP0 = 400 mW.

Fig. 7. Output power excursion for the surviving channelλ= 1552.4 when adding or dropping 7 out of 8 channe

If the pump value is increased to 400 mW, as seen in Fig. 5, both the pump dep
and refill processes become faster, so that we see a faster power sag across the p
well as a larger peak power on the pulses following the first one. In any case, we no
the locus of the peaks follows the power profile of the dashed line.

In Fig. 6 we keptP0 = 400 mW, and increased the spacing between adjacent puls
Tr = 3Tp. By comparison with Fig. 5, we note that the larger pulse spacing leaves
time to the pump to refill, so that the next pulse enjoys a larger pump and thus a large
and thus it depletes the pump faster, with an ensuing increased power sag.

We next investigated the behavior of the same Raman amplifier when channe
drop operations are performed. The amplifier now hadN = 8 equally spaced input signa
(channel spacing�λ = 0.8 nm) from λ1 = 1552.4 to λ8 = 1557.9, with input power
−2 dBm/ch, as in [4]. Figure 7 shows the output power excursion for the surviving cha
λ= 1552.4 when adding/dropping 7 out of the 8 channels, for pump powerP0 = 200 mW
andP0 = 400 mW. We note the increased asymmetry between add and drop transie
the larger pump value, because of the larger saturation that follows the add operatio
drop transients are similar to those observed in Fig. 1.
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4. Steady-state equation

The value of the steady-state depletionxsswhen CW signals are applied to the amplifi
can be obtained from the dynamical equation (16) by using time invariant output p
Sout
j (xss),

xss=
N∑
j=1

Sout
j (xss)wj , (22)

where we defined the weightswj
�= ∫∞

−∞ hj (t) dt . If we use theexponential approximatio
(A.3) and approximateχ ∼= 1, we getwj = hj0d/αp ∼= λj /(λpP0), so that

xss∼= λs

λp

∑N
j=1S

out
j (xss)

P0
, (23)

an expression valid when the signals are closely spaced, at an average wavelengthλs . This
relation shows thatthe depletion is approximately proportional to the ratio of total out
signal power to the pump power.

In (22) the dependence onxss can be made explicit,

xss=
N∑
j=1

wjS
in
j e

{−αjL+gj (1−xss)}, (24)

and such transcendental equation is similar to Saleh’s equation for the steady-s
version in EDFAs [4]. Such equation should also be compared to a similar equati
the depletionΓ at steady-state that the authors have obtained under the impulsive p
depletion approximation [12],

Γ ss=
N∑
j=1

ĉjpKjS
in
j e

{−αjL+gj e−Γ ss}, (25)

where for long amplifiers and large gain, i.e.,αpL� 1 andQj > 4−5 (see Appendix A)
one finds

Kj = 1− e−(αpQj−αj )L

αpQj − αj
∼= 1

αpQj

.

If also Γ ss is sufficiently small, so thate−Γ ss ∼= 1 − Γ ss, the two equations (24) and (2
essentially coincide, i.e.,xss= Γ ss. That this is indeedexactlyso, one can convince himse
by recalling that in the impulsive-pump depletion model,Γ ss was found to be essential
independent ofz [12], hence relation (13) gives

xss=
∫ L

0 P(z)Γ ssdz∫ L
0 P(z) dz

= Γ ss. (26)

However, (25) holds also for much deeper saturation, i.e., when the approximatione−Γ ss ∼=
1−Γ ss fails. We were forced to introduce approximation (5) in order to make the dyn
model tractable.
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5. Time constants of transients

The time constants involved in the transients can be easily made explicit when us
single-pole exponential approximation of the filter (A.3). In such case, in fact, Eq. (16
be reduced to an ordinary differential equation (ODE) as follows. Define

xj (t)
�= Sout

j (t)⊗ hj (t) (27)

which is an ODE in the unknownxj (t),

ẋj (t)= −1

τ
xj (t)+ hj0S

out
j (t), (28)

whereτ
�= d/αp. Now from (16) writes asx(t)=∑N

j=1xj (t), and therefore

ẋ(t)= −1

τ
x(t)+

N∑
j=1

hj0S
in
j (t)e

{−αjL+gj [1−x(t)]}. (29)

Such ODE is quite similar to the dynamical equation of the average inversion in dope

amplifiers [4]. The time constantτ
�= d/αp plays here the role of the fluorescence time

EDFAs. The only significant difference from EDFAs is that the pump power does
explicitly appear in the ODE, but is hidden in the coefficientshj0 and in the log-gainsgj .
How to include pump modulation, or pump relative intensity noise, will be explaine
Section 6.

To understand the effect of the approximations involved in the derivation of (29
compared the “exact” solution of (16) and the “approximate” solution of (29) when a p
of duration 1 ms enters a transparent (i.e., of unit overall gain) distributed Raman am
whose transmission fiber is a non-zero dispersion shifted fiber (Raman gain coe
cjp = 0.7 [W−1 km−1]) of increasing length. The relative pump depletion is shown
Fig. 8, with the exact solution in solid line, and the approximate solution in dashed
We clearly note that the exponential approximation of the filter eliminates the ringing
the step response. Such ringing, however, is smaller and smaller as the amplifier
increases and the exponential approximation becomes closer to the actual filter res

Having observed the similarity of (29) with the ODE governing transients in ED
we next perform a linearization of the ODE (29) as is done in [3] for EDFAs, to find
response toN step input WDM signals and its time constant.

We start by writing the input signals and the state variable as a CW average valu
a deviation with respect to the CW:

S in
j (t)= Sss

j +�Sj (t),

x(t)= xss+�x(t). (30)

With such definitions, the dynamic gain is thus from (10)

Gj(t)=Gsse−gj�x(t) ∼=Gss(1− gj�x(t)
)
, (31)
j j
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Fig. 8. Relative pump depletion for a distributed Raman amplifier based on a non-zero dispersion shift
of increasing lengthL at transparency, when the input signal is a gate of duration 1 ms. Solid: solution of
Dashed: solution of (29).

beingGss
j the steady state signal gain, and the approximation being accurate to with

whengj�x(t) < 0.3. Substitution of (30) and (31) in (29) leads to

�ẋ = −xss

τ
− �x

τ
+

N∑
j=1

hj0
(
Sss
j +�Sj

)(
Gss
j −Gss

j gj�x
)

(32)

which after subtraction of the steady state value obtained through (29) withẋ = 0 simplifies
to

�ẋ = −�x

τ
−

N∑
j=1

hj0S
ss
j G

ss
j gj�x +

N∑
j=1

hj0G
ss
j �Sj ,

where we dropped the small term proportional to�Sj�x. Thus we finally get

�ẋ(t)= −�x(t)

τeff
+

N∑
j=1

hj0G
ss
j �Sj (t)

which corresponds to a first-order low-pass filtering of�Sj (t) with time constant

τeff ∼= d/αp

1+∑N
j=1

ĉjp
αp
Sss
j G

ss
j (L)

∼= d/αp

1+
∑N

j=1 S
out
j (xss)

S is
s

, (33)

whereSss
j is the steady-state input power of thej th signal before the step discontinuity, a

Gss
j (L) is its saturated steady-state gain before the step, and we used (A.4) to appro

hj0gj ∼= ĉjp

dQj

Qj (1− e−αpL)∼= ĉjp

d
.

The second approximation in (33) applies when the signals all have a similar gai
ing λs their average wavelength andS is

s their intrinsic saturation power (21). Thus,
seen in Fig. 9, power transients in saturated Raman amplifiers can be somewha
than the time constantd/αp characterizing pump-induced relative intensity noise (cf. [1
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Fig. 9. Transient time constant (33) versus total output signal powerPtot =∑
i S

out
i

(xss) for counter-propagating
pump, for various types of fiber (data as in Fig. 2).

see also next section) depending on the ratio of the total steady-state saturating
Ptot =∑N

j=1S
out
j (xss) to the intrinsic saturation power, a behavior very similar to tha

saturated EDFAs [3,14].

6. Including pump intensity variations

It is possible to include pump relative intensity noise (RIN) or pump modulation in
analysis, and relate our results to those in [13]. Recall that in (3) we assumed a co
injected pumpP(tp,L) = P0. Assume instead thatP(tp,L) = P0(1 − r(tp)), wherer(t)
is a small4 zero mean stochastic process. After linearizatione−Γ ∼= 1 − Γ , the second
equation in (3) becomes

P(tp, z)= P (z)
(
1− r(tp)

)(
1− Γ (tp, z)

)∼= P (z)
(
1− r(tp)− Γ (tp, z)

)
,

where we have dropped the negligible termr(tp)Γ (tp, z). It is thus clear that the pum
RIN term r(tp) is physically equivalent to the pump depletion termΓ (tp, z) as far as the
signal dynamics are concerned. Following the same steps as in (3)–(11), we can thu
a RIN-induced pump depletion sensed by the signals as

xr(ts)= 1

Lp

L∫
0

e−αp(L−z′)r(ts + dz′) dz′ (34)

so that the output signal power is

Sout
j (ts )= S in

j (ts )exp
{−αjz+ gj

(
1− xΓ (ts)− xr(ts)

)}
, (35)

4 This model therefore does not apply to ON/OFF pump modulation, sometimes used in multi-pump am
to reduce the pump-to-pump interactions [21].
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where for clarity we have calledxΓ the depletion (12) caused by the signals. It is cl
that the dynamical evolution ofxr(ts) is completely determined by the RIN proce
through (34), and if we make the change of variableτ = −dz′ we get

xr(ts)= e−αpL

dLp

0∫
−Ld

e−(αp/d)τ r(ts − τ ) dτ (36)

which can be interpreted as a convolution operation [15],xr(ts)= r(ts)⊗ hRIN(ts), where

hRIN(t)
�= 1

dLp

e−(αp/d)(t+Ld)Π
(
t + dL/2

dL

)
(37)

is the impulse response of a non-causal filter, which is zero outside the interval−Ld �
t � 0. We note in passing that such form of filtering due to the walk-off effect can be f
also in other applications, such as for instance the study of cross-phase modulation
simple expression of its frequency responseHRIN(f ) is known [16], with a 3 dB corne
frequencyf0 = αp/2πd = αpυ/4π [13]. When the truncation due to theΠ(·) function
is absent, i.e., for long amplifiersαpL� 1, the above frequency response simplifies to
anticipating first-order low-pass filter,

hRIN(t)
�= hRIN

0 e−(αp/d)(t+Ld)U(t +Ld), (38)

whereU(t) is the unit step function, andhRIN
0 = 1/dLp . The filter is non-causal, sinc

the signal at retarded timets is affected by the future values of the pump RIN that h
walked past the signal. As a numerical example, if we consider an SMF fiber withαp =
0.28 [dB/km] and group velocityυs = 2× 108 [m/s], we getf0 ≈ 1 [kHz].

We can now define a total pump depletion state variable as

x(ts)
�= xΓ (ts)+ xr(ts)

which is thesuperposition of the two perturbations. Hence from (14) we have

x(ts)= xr(ts)+ xΓ (ts)

= xr(ts)+ 1

Lp

N∑
j=1

ĉpj

L∫
0

e−αp(L−z1)

{ L∫
z1

S in
j

(
ts + d(z1 − z2)

)

×Gj(z2)exp
[−gj (z2)x

(
ts + d(z1 − z2), z2

)]
dz2

}
dz1, (39)

and with our usual simplification we get

x(ts)∼= xr(ts)+
N∑
j=1

S in
j (ts )e

{−αj z+gj (1−x(ts))} ⊗ hj (ts). (40)

Using (40) and (35), we can thus give the block diagram shown in Fig. 10 o
Raman amplifier as a transformation of the signals. Such diagram could for instan
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Fig. 10. Block diagram of the Raman amplifier, as a transformation of the input signals.

straightforwardly implemented in a commercial block-diagram simulator, such as M
SimulinkTM [7].

When the walk-off timedL is large, the gating functionΠ(·) does not affect the filter
impulse response and one can use the exponential approximations (A.3) and (38),
from (27) and (40) we have

x(ts)= xr(ts)+
∑
j

xj (ts),

and by taking time derivatives and using (28) and its counterpart for RIN,5

ẋr (t)= −1

τ
xr(t)+ hRIN

0 r(t +Ld), (41)

one finally gets the complete ODE that includes pump RIN:

ẋ(ts)= −1

τ
x(ts)+

N∑
j=1

hj0S
in
j (ts)e

{−αjL+gj [1−x(ts)]} + hRIN
0 r(ts +Ld).

5 Such relation is obtained from the Laplace transform of the RIN filter (38),

H(s)= hRIN
0 esLd/(s + 1/τ ),

with τ = d/αp , so that(
s + 1

τ

)
Xr(s)= hRIN

0 R(s)esLd ,

whereR(s) is the Laplace transform ofr(t). We thus get

sXr (s)= −Xr(s)

τ
+ hRIN

0 R(s)esLd,

and taking inverse Laplace transforms one gets (41).
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7. The multiple pump case

It is possible to extend the single state-variable model to the case where m
counter-propagating pumps are present. The key idea is to first calculate the “bias
of the extended model by computing the exact evolution of the pump powers alonz in
the absence of signals (we call these theunsaturatedpump profiles), taking into accoun
pump–pump interactions, and then use such information to keep track of the dy
signal-induced depletion of each pump by means of one state variable for each pum

Suppose we haveM counter-propagating pumps, all propagating backwards at speυ,
andN WDM signals propagating forward at speedυ. The formal solution to the prop
agation equations in the retarded frames in this case becomes, forp = 1, . . . ,M and
j = 1, . . . ,N ,


Pp(tp, z)= P0p exp

(−αp(L− z)+∑M
n=1 cpn

∫ L
z Pn(tp, z

′) dz′

− Γp(tp, z)
)
,

Sj (ts , z)= S in
j (ts)exp

(−αjz+∑M
p=1 cjp

∫ z
0 Pp(ts + dz′, z′) dz′),

(42)

where again we have neglected the direct signal–signal Raman crosstalk, andP0p
�=

Pp(tp,L) is the constant injected power of thepth pump, and again we defined the pum
depletion factors as

Γp(tp, z)
�=

N∑
j=1

ĉjp

L∫
z

Sj (tp − dz′, z′) dz′ (43)

for p = 1, . . . ,M. Again we linearizee−Γp ∼= 1 − Γp, and the integral term in the sign
equation in (42) becomes

cjp

z∫
0

Pp(ts + dz′, z′) dz′ = gjp(z)
(
1− xp(ts, z)

)
,

where

Pp(z)= P0p exp

(
−αp(L− z)+

M∑
n=1

cpn

L∫
z

P n(z
′) dz′

)
�= P0pf p(z)

is the (known)unsaturatedz-profile of thepth pump withshape factorf p(z), and we
defined


gjp(z)

�= cjp
∫ z

0 Pp(z
′) dz′,

xp(ts, z)
�=
∫ z

0 f p(z
′)Γp(ts+dz′,z′) dz′∫ z
0 f p(z′) dz′

.
(44)

Now, as in (10), the signal power can be written as
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Sj (ts, z)= S in
j (ts )Gj (z)exp

{
−

M∑
p=1

gjp(z)xp(ts , z)

}
, (45)

where theunsaturatedsteady-state gain is

Gj(z)= e
−αj z+∑M

p=1 gjp(z). (46)

Substitution of (43), (45) in the definition (44) gives for the state variablesxp(ts,L)
�=

xp(ts),

xp(ts)= 1

Lp

N∑
j=1

ĉjp

L∫
0

f p(z1)

{ L∫
z1

S in
j

(
ts + d(z1 − z2)

)

×Gj(z2)exp

[
−

M∑
n=1

gjn(z2)xn
(
ts + d(z1 − z2), z2

)]
dz2

}
dz1, (47)

where for brevity we definedLp
�= ∫ L

0 f p(z
′) dz′. Again such complex equation can

drastically simplified by using the termsgjn(L)xn(ts + d(z1 − z2),L) instead of the ex
act termsgjn(z2)xn(ts + d(z1 − z2), z2) in the above integral. After the usual change
variables, and after dividing and multiplying by theunsaturated gainGj(L) in (46), one
gets

xp(ts)=
N∑
j=1

dL∫
0

S in
j (ts − τ )exp

[
−αjL+

M∑
n=1

gjn
[
1− xn(ts − τ )

]]

× ĉjp

dLpGj (L)

( L−τ/d∫
0

f p(z
′)Gj (z

′ + τ/d) dz′
)
dτ,

wheregjn
�= gjn(L), and the integration is again recognized as a convolution opera

Hence, the state variablesxp(ts) approximately satisfy the followingsystem of implicit
integral equations

xp(ts)=
N∑
j=1

{
S in
j (ts)exp

[
−αjL+

M∑
n=1

gjn
[
1− xn(ts)

]]}⊗ hjp(ts),

p = 1, . . . ,M, (48)

where the filters impulse responses are

hjp(t)= ĉjp

dLpGj (L)

[ L−t/d∫
0

f p(z
′)Gj

(
z′ + t

d

)
dz′
]
Π

(
t − dL/2

dL

)
. (49)

Note that such filters depend on the (possibly flattened) overall unsaturated gainGj (46).
Such filters can be numerically evaluated once the exact unsaturated pump power
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Fig. 11. Block diagram of Raman amplifier withM counter propagating pumps andN WDM input signals.

f p(z) are known from the solution of the propagation equations for the pumps. Alth
it may be possible to introduce further simplifying assumptions to approximate the
profilesf p(z) [10,18], still a closed form for the filters does not seem readily obtaina
given the complicated form of the integrals in (49).

It is interesting to note that our model can be described by the input-output
diagram shown in Fig. 11, and can thus be implemented in commercially available
diagram simulators [7]. In the scheme, we have also introduced further functional b
(i) the RIN filtershRIN

p (t), p = 1, . . . ,M, Eq. (37), which take into account the (possib
present) relative intensity noise (RIN) or modulation on each pump; (ii) the pre-emp
gain blocks Tiltj , j = 1, . . . ,N , which are used as a simple approximate way to acc
for the power tilt in the signals’ bandwidth due to direct signal-to-signal Raman cros
which can be significant in distributed Raman amplifiers and takes place at the inp
fore amplification, as already discussed at the end of Section 2. Such method has
been successfully applied to saturated Raman amplifiers at steady state in [12].

In summary, usingM pumps leads toM state variablesxp(ts), p = 1, . . . ,M, whose
time evolution is found by iteratively solving the system (48). The procedure to solv
gain transient problem is the following:

1. Compute the pump evolution alongz, Pp(z) in the absence of signals. This impli
solving the steady-state propagation equation for pumps only, accounting for p
pump power transfer;

2. Compute and store the MN filter responses, as per (49);
3. Iteratively solve the implicit system of update equations for pump depletions (48

In essence, the procedure amounts to calculating the steady-state amplifierbias pointwith-
out saturating signals (points 1 and 2), and then evaluating the time-varying signal-in
pump depletions from such bias point.
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Fig. 12. Distributed multi-pumped Raman amplification in a 80 km NZDSF: (a) Raman saturated stead
gain and fiber loss profile, and (b) output power time evolution of channels at 1545, 1565, 1585 nm.

The steady-state values of the state variables when the signals are CW are easil
as

xss
p =

N∑
j=1

{
S in
j e

[−αjL+∑M
n=1 gjn[1−xss

n ]]}Hjp(0), p = 1, . . . ,M,

and clearly depend on the value atω = 0 of the filtersHjp(ω). Once such equations a
solved, the signal-saturated steady-state gain profile (45) is obtained.

It should be clear from the derivation that the main limit of such extended model is
makes a distinction between a group of slightly perturbed pumps and a group of (po
strongly) modulated signals. For instance, in resonant pumping, the pump closest
signals behaves itself as a signal for the pumps at lower frequencies, and we should
some discrepancy between model and simulation in such case.

To test the range of applicability of our extended model, we investigated several
pump schemes proposed in the literature, two of which will be presented in the next s

7.1. Numerical verifications

We applied our model to two recently proposed Raman amplifiers, to test their dy
behavior in deep saturation in order to get a realistic idea of the accuracy of our m
In this subsection we present the obtained results.

(A) We first consider the distributed amplifier presented in [19], which has an 8
non-zero dispersion shifted fiber (NZDSF) with back-propagating pumps at 1423,
1464 and 1465 nm, with total input power of 590 mW. We consider the amplification
WDM signals in the [1520, 1610] nm band, with 0 dBm/ch input power, which drive th
amplifier in deep saturation.

In Fig. 12(a) we show the steady-state gain versus wavelength. The solid line sho
prediction of our model, the dashed line the exact solution of the complete propa
equations, and the dotted line—almost completely superposed to the previous on
solution of the propagation equations when ASRS and DRB are switched off. The fibe
profile across the channels is also shown in dash-dotted line. We note that in such
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Fig. 13. Discrete multi-pumped Raman amplification in a DCF with length 5.5 km: (a) Raman sat
steady-state gain, and (b) output power time evolution of channels at 1546.3, 1566.7, 1587.1 nm.

saturated amplifier, noise and DRB are negligible, and our model very well match
exact solution, the error with respect to the complete solution being less than 0.2 dB
the whole bandwidth, and mostly due to the approximations in the Tilt blocks [12]. W
compared to the unsaturated gain profile [19], one notes a general gain decrease
pronounced tilt due both to saturation and to the signal–signal direct Raman intera
In [19] it was noted that it is possible to change the Raman pumps in order to coun
such direct Raman tilt.

We then ON/OFF modulated all 80 channels with a random pattern of 10 bits and
duration ofT = 200 ms, thus emulating time slotted packet transmission. The time b
ior of three selected channels, marked with big dots in Fig. 12(a), is shown in Fig. 1
where solid line curves are the output of our model, while dotted lines are the output
complete time-dependent propagation model (which neglects ASRS and DRB). W
sharp transients across the packets, which indicate a markedly saturated dynamic
To give an idea of the execution time savings, running the computations in Matlab
800 MHz Pentium III, takes 2 min for our model to both compute the steady-state p
and the transient behavior, while it took over 2 h for the complete solution of the pro
tion equations.

(B) We next consider the discrete Raman amplifier presented in [20], which has a
dispersion compensating fiber (DCF) with 6 back-propagating pumps at 1428, 1445
1484, 1491 and 1507 nm, with total injected power equal to 968 mW. We consider 24
WDM signals in the range [1530, 1610] nm, with 4.5 dBm/ch input power, as in [20].

Figure 13(a) again shows the steady-state gain, and we note a better match b
model and exact solution as compared with the distributed amplifier, because of the a
of direct Raman tilt. We then applied random ON/OFF modulation to all 24 channels
the same slot time of 200 ms, and the time behavior of the 3 selected channels ma
Fig. 13(a) is shown in Fig. 13(b). From the figure, it is clear that the amplifier is de
saturated, and the match of our model with the exact solution is quite satisfactory
the largest dynamical error being smaller than a few percent, and occurring at s
state.

As for the computation times, our model took around 1 min to run both the stati
dynamic simulation, while the exact static and dynamic solutions took about 15 min.
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Fig. 14. Test of model accuracy with resonant pumping. (Left) Static and dynamic gain versus pump d
(Right) Static and dynamic error between model and exact solution versus pump distance.

shorter time, obtained by keeping the same time resolution as that of the example
due the fact that the amplifier is shorter, and the number of channels is smaller. Plea
that the savings of our analytical model become more evident when the channel c
larger.

The multi-pump model has one extra limit with respect to the single pump model.
the model makes a fundamental distinction between pumps and signals, it becom
accurate in those cases in which the distinction is blurred, such as in resonant pump

To test such case, we tried a simple experiment. We launched a single chan
1580 nm, consisting of a single 400-µs-long rectangular pulse of 1 mW input powe
a 10 km fiber with peak Raman gain coefficient 3.2 W−1 km−1. We used two counter
propagating pumps: the first had 240 mW input power and was fixed at 1480 nm,
peak signal gain. The other had 180 mW input power. We recorded in Fig. 14 (left)
the static and the dynamic gain as the second pump was moved to lower wavelengt
1480 nm. The static gain is the one experienced by the portion of the pulse that has r
steady-state, while the dynamic gain is the largest one in the transient, in practice c
ing with the unsaturated gain experienced by the leading edge of the pulse. In the
we note the initial decrease of the gain because the second pump provides less
the signal, followed by a subsequent increase of the gain because the second pump
amplify the first pump at 1480 nm by resonant pumping. In Fig. 14 (right) we also reco
both the static and the dynamic error, i.e., the largest and the steady-state error betw
model and the exact solution of the propagation equations. The relative pump dep
for both pumps remained below 0.135. We note that the error is largest at 100 nm
spacing, i.e., at resonant pumping, and can be more than 4 times larger than with
pumping, although it remains below 0.2 dB in this example.

8. Co-propagating pump

Let us now consider the case of co-propagating pump. We will closely follow the de
tions for the counter-propagating pump. In this case both pump and signals are inje
zi = 0 and propagate at group velocityυp andυs in the positivez direction, with walk-off
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d ∼= D(λs − λp) dictated by the GVD parameterD.6 Neglecting direct signal crosstal
the solution at coordinatez0 = z � L of the propagation equations for the co-propaga
pump configuration in the retarded frames is obtained from (2) as{

Sj (ts, z)= S in
j (ts )exp

{−αjz+ cjp
∫ z

0 P(ts + dz′, z′) dz′},
P (tp, z)= P0e

−αpze−Γ (tp,z),
(50)

where again we defined

Γ (tp, z)
�=

N∑
j=1

ĉjp

z∫
0

Sj (tp − dz′, z′) dz′. (51)

By closely following the derivation for the counter-propagating pump, one define

unsaturated log-gain asgj (z)
�= (1− e−αpz)cjpP0/αp , so that the unsaturated gainGj(z)

is still given by (9), and the pump relative depletion as

x(ts)= 1

Lp

L∫
0

e−αpzΓ (ts + dz, z) dz. (52)

With standard manipulations, one arrives at the following update equation for the
depletion:

x(ts)= 1

Lp

N∑
j=1

ĉjp

L∫
0

e−αpz1

{ z1∫
0

S in
j

(
ts + d(z1 − z2)

)

×Gj(z2)exp
[−gj (z2)x

(
ts + d(z1 − z2), z2

)]
dz2

}
dz1. (53)

We may try here the same trick as in the counter-propagating pump case, namely
exp[−gjx(ts + d(z1 − z2),L)] instead of the correct term exp[−gj (z2)x(ts + d(z1 − z2),

z2)] in the above integral. Such approximation make sense for co-pumped amplifiers
lengthL corresponds to maximum signal gain. With such assumption, one gets aga
update equation (16) for the depletion, whereSout

j (ts, x(ts)) is given again in (11), but now
hj is the impulse response of the following linear filter:

hj (t)= ĉjp

dLpGj (L)

[ L∫
−t/d

e−αpz′Gj

(
z′ + t

d

)
dz′
]
Π

(
t + dL/2

dL

)
. (54)

As we see, the filter is non-causal (i.e., it extends to negative time) whend > 0, i.e., when
the pump is faster than the signals, since the depleted pump reaches past sectio
packet and distorts them with echoes of the future. Appendix A provides a closed
expression of the above filter.

6 Such approximation is valid when pump and signals are either both to the left or both to the right of th
dispersion wavelengthλ0, as in SMF and NZDSF− fibers. The above does not hold for NZDSF+ fibers, where
λ0 is to the left of the C-band, but to the right of the pump wavelength.
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Fig. 15. Filter impulse responsehj (t) (A.5) for co-propagating pump, in the case in which the pump is faster
the signal.

8.1. Numerical verifications

In the following, we present a somewhat artificial example in which the fiber param
of the Raman amplifier are those of the DCF used in the calculations in Fig. 1, b
dispersion isD = +110 ps/nm/km and thus the pump is faster than the signal, in orde
highlight the effect of an anti-causalhj (t) filter.

Figure 15 showshj (t) in (54), numerically evaluated as per (A.5) in Appendix
for anL = 14 km amplifier made of fiber with Raman coefficientcjp = 2 [W−1 km−1],
with signal wavelengthλj = 1545.3 nm and pump wavelengthλp = 1454.7 nm, with a
co-propagating pumpP0 = 640 mW. The filter is zero beyondt < −dL = −D�λL =
−0.15 µs.

We next made the following experiment. The same amplifier was first counter-pum
and then co-pumped with the same pump power to check similarities and differ
between the two schemes. The input signal in the counter-pumped scheme is th
two-pulse (1 mW pulse followed by a 0.1 mW pulse) single-channel sequence u
Fig. 1, with duration 400 µs per pulse. Each pulse was long enough to observe th
plete saturation transient on it, as in Fig. 1. The time waveforms of the output puls
shown in Fig. 16, left column. We are already familiar with the large spike on the lea
edge of the first pulse.

We then used the inverted sequence (0.1 mW pulse followed by 1 mW pulse) to
the co-pumped amplifier, but now the pulses had a much shorter duration of 0.2 µ
enough to observe the complete saturation transient on them. The output pulses are
in Fig. 16, right column. We note here that the power spike is on the trailing edge o
pulse, an effect due to the fact that the pump overtakes the signal, and is thus con
to the non-causality of the filterhj (t). In the insets, we also show the time behavior
the pump depletionx(t). The top row figures were obtained for the same injected p
powerP0 = 640 mW, while the bottom row figures usedP0 = 400 mW. It is known tha
in the unsaturated regime co- and counter-pumping with the same power produce th
unsaturated gain. This is visible in the figures, since the leading edge of the pulse
counter-pumped scheme and the lagging edge of the pulse in the co-pumped schem
rience such unsaturated gain, and thus have the same power level.
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Fig. 16. Power out of a 14 km amplifier for the case of counter-pumping (left column) and co-pumping
column), for injected powerP0 = 640 mW (top row), andP0 = 400 mW (bottom row). Relative pump chang
x(t) shown in the insets. Solid lines: exact solution (1); dashed lines: model (16).

Solid lines represent the exact solution of the propagation equations (1). By comp
between left and right columns, we note that the amount of saturation, and thus pow
on the pulses, is about the same in the two schemes.

Dashed lines represent the solution of the model (16). Such lines are coincidin
the exact solution in both cases of counter-pumping (left column) and are thus hidd
the solid line curves, since the depletionx(t) is well below 30% in both cases.

On the contrary, we note that the model for co-pumping is much less precise, w
error on the steady-state level that increases with increased pumping. We note fr
figure that the reproduction of the transient is acceptable, with error below 5%, whe
depletionx(t) remains below 6%.

In any case, we note that the model is able to correctly reproduce the time const
the transients in both cases.

Note that the major problem in the experimental observation of power transients
co-pumped scheme is connected to the very short transient times, of the order of
nanoseconds, and that the switch-on and switch-off times of the pulses must be
nanosecond time scale order to reproduce the same transients we obtained in th
lation. If one uses an optical modulator with switching time comparable to those o
transients, one gets a much smoother time profile of the output pulse.

Finally, we note from the exponential approximation (A.6) of the filterhj (t) that the
fast transient times in the co-pumped case are a consequence of the well-known dif
of the RIN filter bandwidth in the co- and counter-propagating configurations [13,15
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9. Conclusions

We presented a comprehensive analytical treatment of transient gain dynamics i
rated Raman amplifiers. Although the exact solution of the propagation equations is a
simple to compute using standard numerical integration of the propagation partial
ential equations, such solutions require very long computation times, especially in
WDM systems, and the numerical integration does not provide any insight into the n
of the solutions and the quantitative importance of the various system parameters.

The modeling presented in this paper starts in fact from the propagation equa
and by introducing sensible approximations reduces the extremely complex diffe
equations to familiar forms in system and control theory, namely, block diagrams w
can be readily implemented using commercially available block diagram simulators.

The true value of such system model is twofold.
First, transient simulation times are almost independent of the number of WDM

nels, as long as the level of saturation falls within the range of applicability of the m
Therefore, enormous simulation time savings are possible for very large WDM sys
such as those envisaged both for the next generation metropolitan area networks,
the all optical wide area networks. Solutions such as Internet protocol (IP) over W
packet networks are examples in which our models shall provide the only possibility o
lowing the complex dynamics of the interconnected network of Raman and erbium
fiber amplifiers, thanks to the availability of simple block diagrams for both of them.

Second, block diagram models naturally lead to simple approximate expressions
main system parameters of interest. In this paper, for instance, we have derived close
expressions for the power sag across pulses and for the transient time constants
amplifier output power. The key amplifier parameters that shape the transients hav
identified and quantified.

The extension of the counter-propagating pump model to the multiple pump ca
creases the applicability of the model to very practical wide-band amplifiers.

We have also proven that the co-propagating case can be partially tackled us
same tools, although the accuracy is much less than that of the counter-propagatin
case.

It may be conjectured that a mixed pumping scheme in which a small fraction o
gain comes from co-pumping and the rest from counter-pumping could also be ta
although this remains an open question for future investigations.

Let us now move to the possible countermeasures against such transients. A
question to ask is the following: given that we have spotted a single state variable,
the EDFA, and that the update equations for such state variable are similar to those
EDFA, is it possible to gain-clamp the counter-pumped Raman amplifier? Classica
clamping in EDFAs consists of feeding the output signal at a specific wavelengthλl back
to the input so that a standing wave exists at that frequency that saturates the inversi
the state variable) and clamps it [14]. The effectiveness of such feedback control re
the fact that the feedback delay is much smaller than the time scale of the transients
the system.

In the Raman amplifier, a perturbation of the standing wave operated by an inc
packet atλs creates a “notch” in the pump power that propagates backwards to the
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The reaction time of the standing wave is at least the propagation time inside the am
Hence, by the time the standing wave reacts to the signal power variation, the not
propagated to the input, and thus we have an undampened power sag across th
output pulse.

In other terms: since the delay between the stimulus and the start of the control
is of the same order as the time scale of the transients, then any feedback control
is ineffective to dampen the transients. From the experimental results in [22] one ca
that gain-clamping a discrete Raman amplifier can in fact eliminate the large ove
on the leading edge of the pulse, caused by the unsaturated gain enjoyed by th
front, because the standing laser light keeps the gain at deep saturation. However, f
same results (Fig. 6 in that reference) one observes that the subsequent oscillations
dampened by the clamping laser, because of the control delay reason we mentioned

So, how can we counteract such transients? The simplest countermeasure is the a
of a hybrid dual-stage Raman–EDFA configuration, in which the first Raman stage
not reach output signal powers large enough to deeply saturate it, and the following
stage can then be gain clamped. Another option is to control the pump current
control signal that is aware of the entering pulses. The analytical framework pro
in this paper should make it possible to extend previous analytical investigations o
clamping [14] to the Raman amplifier as well.

Appendix A. Filters and their approximation

In this Appendix we provide closed-form analytical expressions of the filterhj (t) in
(17) and (54) as power series expansions, along with simple single-pole low-pass a
mations, valid for long Raman amplifiers.

A.1. Counter-propagating pump

We first derive expressions forhj (t) in (17). Let us start by considering the followin
function:

Fj (y)= 1

Gj(L)

L−y∫
0

e−αp(L−z′)Gj (z
′ + y) dz′.

Using (9), withQj
�= cjpP0/αp [11], we get for 0� y � L

Fj (y)= exp{−αpL− αj y −Qje
−αpL}

exp{−αjL+Qj(1− e−αpL)}

×
L−y∫
0

exp
{
(αp − αj )z

′ +Qje
−αp(L−y)eαpz′

}
dz′.

Performing the following change of variablet =Qje
−αp(L−y)eαpz′ , one gets
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by
Fj (y)= e−αpL+αj (L−y)−Qj

αp
Q
(αj /αp−1)
j

Qj∫
Qj exp{−αp(L−y)}

t−(αj /αp)et dt

= e−Qj

αp
e−αpyQ(αj /αp−1)

j

[
Ψ (Qj ,αj /αp)−Ψ

(
Qje

−αp(L−y), αj /αp
)]
,

whereΨ (x, a) is defined as

Ψ (x, a)
�=

x∫
0

t−aet dt, 0< a < 1,

and we have assumedαp �= αj .7 Such function can be quickly numerically evaluated
the following series

Ψ (x, a)= x1−a
∞∑
n=0

xn

(n+ 1− a)n!
obtained by expanding the exponential in a Taylor series aboutx = 0 and then performing
the integrations.

Therefore using the above results, one gets for the filter impulse response whenαp �= αs

hj (t)= ĉjpe
−Qj

dLpαp
Q
(αj /αp−1)
j e−(αp/d)t

× [
Ψ (Qj ,αj /αp)−Ψ

(
Qje

−αp(L−t/d), αj /αp
)]
Π

(
t − dL/2

dL

)
, (A.1)

and whenαp = αj

hj (t)= ĉjpe
−Qj

dLpαp
e−(αp/d)t[Ei(Qj )− Ei

(
Qje

−αp(L−t/d))]Π( t − dL/2

dL

)
. (A.2)

For long amplifiers such as the distributed Raman amplifiers, in whichL� 1/αp, the filter
can be simplified to

hj (t)∼= hj0e
−(αp/d)t , (A.3)

where

hj0 = ĉjp

dQj

χ,

χ
�= e−QjQ

αj /αp
j Ψ (Qj ,αj /αp), (A.4)

7 If αp = αj , the functionΨ (x,1) is not well defined, since the integral diverges att = 0. However, in this

case one can use the exponential integral function Ei(x)
�= ∫ x

−∞ z−1ez dz, z ∈ C, and get

Fj (y)= e
−Qj

αp
e−αpy

[
Ei(Qj )− Ei(Qj e

−αp(L−y))
]
.
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Fig. 18. Top row: filter impulse responsehj (t) (solid line) and its exponential approximation (dashed lin
Bottom row: its Fourier transformHj (ν).

where the functionχ is close to 1 except for a small interval ofQ values where it swing
up to 2 forαj/αp < 0.8, as shown in Fig. 17.

The top row in Fig. 18 showshj (t), Eq. (A.1), in solid line, and its exponential appro
imation (A.3) in dashed line, for (left) a 14 km amplifier and increasing values ofQ, and
(right) for Q = 5 and increasingL. All filters are zero beyondt = dL, which is twice the
propagation time inside the amplifier (we assumedυs = 2× 108 m/s). In the calculations
we usedαj = 0.46 dB/km, αp = 0.6 dB/km, cjp = 2 [W−1 km−1], corresponding to a
dispersion compensating fiber (DCF) with signal wavelengthλj = 1545.3 nm, and pump
wavelengthλp = 1454.7 nm [5]. The bottom row in Fig. 18 shows the corresponding fi
frequency responseHj(ν). The frequency oscillations are due to the truncation oper
by theΠ(·) gating function, whose Fourier transform has a sine-like behavior with
oscillations. Note that all filters have a 3 dB breakpoint at a frequency close to that
exponential approximationν = αp/2πd .
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the
A.2. Co-propagating pump

In this section we will provide a closed-form analytical expression of the filterhj (t)

in (54).
Let us start by considering the following function:

Fj (y)= 1

Gj(L)

L∫
−y

e−αpz′Gj(z
′ + y) dz′.

Using (9), we get for 0� y � L

Fj (y)= exp{αjy +Qj }
exp{−αjL+Qj(1− e−αpL)}

L∫
y

e−(αp+αj )z′−Qje
−αp(z

′−y)

dz′.

Performing the change of variablet =Qje
−αp(z′−y), one gets

Fj (y)= eαjL+Qje
−αpL

αpQ
(1+αj /αp)
j

[
γ

(
Qj,1+ αj

αp

)
− γ

(
Qje

−αp(L−y),1+ αj

αp

)]
e−αpy,

whereγ (x, a) is the well-known incomplete gamma function,

γ (x, a)
�=

x∫
0

ta−1e−t dt, a > 0,

wherea = 2 whenαj = αp . Such function can be quickly numerically evaluated by
following series

γ (x, a)=
∞∑
n=0

(−1)nxa+n

(n+ a)n!
obtained by expanding the exponential in a Taylor series aboutx = 0 and then performing
the integrations. Whena is an integer, then we can use the exact expression

γ (x, a)= (a − 1)!
[

1− e−x
a−1∑
n=0

xn

n!

]
.

Therefore using the above results, one gets the filter impulse response as

hj (t)= ĉjp

dLp

F

(
− t

d

)
Π

(
t + dL/2

dL

)
and thus

hj (t)= ĉjp

dLp

eαjL+Qje
−αpL

αpQ
(1+αj/αp)
j

e(αp/d)t

×
[
γ

(
Qj ,1+ αj

αp

)
− γ

(
Qje

−αp(L+t/d),1+ αj

αp

)]
Π

(
t − dL/2

dL

)
.

(A.5)
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For long amplifiers in whichL� 1/αp , the filter can be simplified to

hj (t)∼= hj0e
(αp/d)t , t � 0, (A.6)

and zero elsewhere, being

hj0 ∼= ĉjp

d

eαjL+Qje
−αpL

Q
(1+αj /αp)
j

γ

(
Qj ,1+ αj

αp

)

∼= ĉjpe
αjL

d

1− e−Qj (1+Qj)

Q2
j

∼= ĉjpe
αjL

dQ2
j

, (A.7)

where in the first line we dropped the secondγ (.) term; in second line we neglecte
Qje

−αpL with respect toαjL, and approximateda ∼= 2 and thusγ (x,2)= 1− ex(1+ x);
and in the third line we assumedeQj � 1. Such exponential filter has the same time c
stant as the RIN filter for co-propagating pump [13].
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