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Abstract

This paper provides a detailed analysis of transient gain dynamics in saturated Raman amplifiers
fed by wavelength division multiplexed (WDM) signals. Such dynamics are due to a pump saturation
effect, known as pump-mediated signal-to-signal crosstalk, which is equivalent to the well-known
cross-gain modulation in EDFAs. We provide for the first time a simple block-diagram model of the
Raman amplifier, whosstateis represented by thelative pumps depletiosensed by the signals.

With such model, we are able to prove that the time constants of the Raman gain transients are of the
same order as the pump-signal walk-off times. For counter-propagating pumps, the model is very
accurate in predicting both the steady-state gain and the transient gain dynamics, with more than an
order of magnitude improvement in computation time with respect to the direct solution of the signals
and pumps propagation equations. The value of such model is therefore in the simulation of dynamic
WDM networking scenarios in which the input powers have large swings in time. The model also
extends to the co-propagating pump and well captures the time constants involved in the transients,
although the accuracy in the predicted power levels is worse than that of the counter-propagating
pump case.

0 2003 Elsevier Inc. All rights reserved.

1. Introduction

Transient gain dynamics in saturated doped-fiber amplifiers have been studied inten-
sively in connection with sudden channel addition or removal in wavelength division
multiplexed (WDM) systems caused by either unintentional failures, or by deliberate net-
work reconfigurations [1,2]. The main concern is the duration of the power transients,
which may induce temporary performance degradation, and the amount of power surges,
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which may damage the optical components and cause system disruption. Such transients
are connected to the population dynamics of the dopant ions, and can be much faster than
the ions relaxation time, depending on the signals saturating power [2—4].

Surprisingly, such gain transients have recently been experimentally observed even in
counter-pumped single-channel saturated Raman amplifiers [5], although no ions are in-
volved in the amplification process. The reason is that the strong power of the signal leading
edge depletes the injected pump, and thus the main body of the signal pulse does not enjoy
the same high gain as the signal front. Such transients can be numerically reproduced by
solving the coupled time-dependent propagation equations for signals and pumps, and are
connected to the signal-pump walk-off [5]. Simulation and experimental results with two
WDM channels and multiple counter-propagating pumps were also reported in [6].

In this paper, we first show that the gain dynamics in the single counter-pumped Ra-
man amplifier can be accurately predicted by determining the time behavior of a single
state variable, namely, the relative pump change sensed by the signals. Such state-variable
model provides dramatic savings in transients computation times with respect to the com-
plete propagation model, larger savings being connected to larger WDM channels count.
The state model is similar to the state model for erbium doped fiber amplifiers (EDFA) [4],
and is thus amenable to a simple block-diagram implementation, which makes it attractive
for block-oriented optical network simulators [7]. Next, we extend the model to the case of
multiple counter-propagating pumps, and we show that it accurately predicts the dynamics
of practical wide-band Raman amplifiers. Since the multi-pump model makes a fundamen-
tal distinction between signals and pumps, when such distinction gets blurred, such as in
resonant pumping, the accuracy of the model is reduced, and we quantify such reduction.

It is known that transient gain dynamics are present also in co-pumped Raman am-
plifiers, with transients occurring on a much faster time scale than in counter-pumped
amplifiers [6,8]. We develop here a state-variable model also for the co-pumped case,
which we use to predict the time constants of the transients. However, our model strongly
relies on the peculiar feature that the pump-saturating signal power abruptly increases
towards the amplifier output, which is true for most counter-pumped amplifiers, and is
only an approximation for co-pumped amplifiers. Hence the model is less accurate for
co-pumped amplifiers, although the time constants are correctly reproduced.

This paper is organized as follows. In Section 2 we introduce the propagation equations,
and provide their formal implicit solution under specified simplifying assumptions. In Sec-
tion 3 we derive the model for the single counter-propagating pump case. In Section 4 we
test the accuracy of the model with respect to the exact solution, and explore several exam-
ples of gain dynamics. We then study the steady-state equation and provide a linearization
of the model in order to obtain explicit expressions for the time constants involved in the
transients. In Section 5 we explain how to include pump relative intensity noise into the
model. Section 6 deals with the extension of the model to the multiple pump case, while
Section 7 provides its numerical validation. Finally, Section 8 tackles the co-propagating
pump case.

1 Some discrete Raman amplifiers use a combination of different fibers to achieve a more complex gain-length
profile even in the counter-pumped configuration. The accuracy in such case might be reduced as well.
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2. Propagation equations

AssumeN WDM signals, at wavelengths;, j =1, ..., N, propagate along a fiber at
the same group velocity,, and a single pump at a shorter wavelengghpropagates at
velocity v,.

By casting the propagation equations [9] in the signals and petapded time frames

A A
ty =1t —z/vs andt, =t — z/v,, One gets

N
d ~
—P(ty,2) = i[a,, + ) 8jpS;(ty —dz, z>]P(rp, 2),

9z =
N
a
=Sjlts, ) =| —aj +cjpPlty +dz,2) + Y ¢iSilts, 2) | (15, 2),
9z i
j=1,...,N, 1)

whereP(t, z) andS; (¢, z) are the pump and signal powers [W] at timand coordinate;
a, ande; is the attenuation of pump and signals, respectiv«él@; (1/vs — 1/v,) is the
walk-off parameter; the coefficiet; 2 yji if ;> A; andcj; 2 —yjihi/Ajif A <A,
wherey;; = y;; > 0 is the Raman gain efficiency coefficient fWkm~1] between wave-
lengthsi; anda ;; and finally¢;, 2 —cpj, Which is a positive quantity for all signajs

The top sign in thet symbol in the first equation refers to the counter-propagating
pump, for whichv, < 0, while the lower sign to the co-propagating pump, for which
vp > 0. In the above equations we neglected spontaneous Raman scattering, and Rayleigh
backscattering. The summation term in the signal propagation equation accounts for the
direct signal to signal Raman crosstalk.

The formal solution of (1) can be obtained by separating the variables and integrating
from the input coordinatez(s for signals andjp for pump) to the output coordinateo
for signals andp for pump) as

P(tp, zop) = P(tp, zip) exp{£[ep (zop — zip)
+ Xy Jor Sy —dz.2)dz]},
S(t5, z08) = S(ts, zis) €XP{—atj (z0s — zis) + Cjp [2° P15 +dz,2) dz
+ e S22 8i(ts, 2) dz}.

(2)

To make the analysis tractable, in the following we will neglect the direct signal-to-signal
Raman crosstalk in the Raman amplifier. While in most discrete Raman amplifiers such
crosstalk is negligible, since the signal powers rise to large values only close to the output,
in distributed Raman amplifiers most direct signal-to-signal Raman crosstalk occurs in the
first kilometers of the transmission fiber, where no amplification is present. Hence such
crosstalk can be easily accounted for analytically using well known methods [10], and
then the modified input can be used in our simplified model.
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3. Counter-propagating pump

In this case the pump is injectedz$ = L, and the signals enter gt = 0, whereL is
the fiber length, and we assume thgt= —uv;, so thaid = 2/v,. From (2), the solution of
the simplified propagation equations for the counter-propagating pump case at coordinate
Zop=2Zos=2Z< L is
Sits, 2) = Sij”(ts) exp{—ajz+cjp 5 Plts +dz, 7)) d7'},
P([p, Z) — Poe—ap(L—Z)e—F(tp,Z)’

3)

where Py 2 P(tp, L) is the constant injected pump pow@?}(rs) 2 S;(ts,0) is the input
signal waveform, and
N L
I'(tp,2) 2 Zéj,, / Sj(t, —dz',z)d7 (4)
Jj=1 z
is a quantity defined in the pump retarded frame. For moderate pump depletion, i.e.,
I' < 0.3, we can approximate
e l'=1-r, (5)
with an error below 5% (i.e., below 0.2 dB), so that from the second of (3) we get
P(tp,z) = P(z2)(L— I'(tp,2)), where P(z) 2 Poe=rL=3) is the undepleted pump pro-
file, and thus
AP(ty,2)

I, z2)= ﬁ(z)

(6)

whereAP(t, z) 2 P(z) — P(tp, z), so that wephysically interpret” as the relative pump
variation caused by saturation, measured in the pump retarded time frame at coorgdinate
Using thekey approximatiol5), the integral term in the signal equation in (3) becomes
Z
cjp/P(ts +d7',2)d7 =gj(2)(1—x(t,2)), @
0
where we defined

{ gl (Z) é (e_apL (Eal’z - 1)) cjgppo )

A - Py _ o
x(fs,z)=;’j”(zg) Joe = g+ d7 ) dz.

The first row defines the undepleted on-lifarithmic gaing;(z), while the undepleted
gain vsz profile is [11]

Gj(2) =exp(—a;z+g;(2)). ©)
The second definition in (8) can be interpreted as follows. Once (7) is plugged in (3) we
get the signal power atas

Sj(t5.2) = S (t5) exp{ —erjz + g (2) (1 — x (15, 2)) }. (10)

(8)
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and since the ternil — x(t,, z)) multiplies the injected pumg, hidden ing;(z), we see
thatx (¢, z) physically represents the relative pump depletion sensed by the signal in its
retarded time frame at coordinate

Now let x (z;) 2 x(ts, L) be the depletion at the output, agg 2 gj(L), so that the
output signals can be written as

A .
SMs) = 85, L) = ST (1) exp{—a; L + g (1 — x (1))}, (11)
and from (8) one can write

L
x(ty) = Li / eI (1 + dz, ) dz, (12)
p
0
being
L

8j 1 F3) —a,L A
=— | P@Qdz=1Q—-e"“"")/ap,=L
cjpPo POO P P

the effective fiber length at,,. Using (6) in (12) we also get another physical interpretation
of x,

J& AP +dz, 2) dz
[y P(2)dz

which clarifies by comparison with (6) the similarity betweemmnd I": x is the relative
integrated pump variation, measured in the signals retarded time frame

We now use (12) to determine the time evolutiorr &f). Oncex (z;) is known, the time
evolution of all the output signals is immediately obtained through (11). We use (10) in (4),
and plug the result in (12) to get

1 N L L
x(ts) = L—Zéjp/e%(Lz1){/5'j”(ts+d(z1—zz))
p
=1 9

<1

x(ts) = (13)

x G(z2) exp[—g;(z2)x (ts + d(z1 — 22), 22) ] dzz} dzi. (14)

Such equation is quite complex, but it can be drastically simplified by recalling that the
G j(z) profile very sharply arises in the last few meters of the Raman ampilifier, so that we
can use the terrs ; (z2) exgd—gjx (t; + d(z1 — z2), L)] instead of the exact saturated gain
Gj(z2) expg—g;(z2)x (ts + d(z1 — z2), z2)] in the above integral:

L

N L
1 . _ _ i
x(ts)gL—chp/e ap(L z1){'/‘Sﬂjn(ts—d(zz—zl))
P =1 0

21

x exp[—g;x(ts —d(z2 — 21)) ]G j (z2) dzz} dzi. (15)
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What we gain is that now we have an integral equation in the only unknawn We
solve it by making the following change of integration variables: d(z2 — z1); 7/ = z1.
After the change, by dividing and multiplying l&y; (L), one finally gets

v dL
x(ts)ZZ/Sijn(ts—T)e[_afL+gf[1_x(t“_T)]]
j=1p
. L—t/d
Cip —ay(L—7") ’ ’
X — » G; t/d)dz | dr,
deG.;<L)( / ¢ j@tr/dadz

where the integration is easily recognized as a convolution operation. Hence, the state
variablex (z;) approximately satisfies the following implicit integral equation

N
x(t) =Y S9(ts, x(t)) ® hj (1), (16)
j=1
WhereS;’Ut(ts,x(tS)) is given in (11), the symbao® denotes convolution, antl; is the
impulse response of a linear filter:

L—t/d
Ci (] t t—dL/2
hj(t) = —2— / W L=DG i+ = ) d T —5 ), 17
i dL,,G,(L)[ ¢ i\e+g)% dL (47
0

whereG (z) is the undepleted gain-versaprofile (9), andl7(x) =1 for—0.5<x < 0.5
and zero else. In Appendix A, a closed form of the impulse response (17) is provided, along
with its exponential approximation for distributed Raman amplifiers (A.3).

The fundamental equation (16) can be solved recursively, by performing the numerical
convolution on the right hand side, and updatirig) as the average between its old value
and its new value obtained from the convolution, in order to smooth out the (possibly)
large fluctuations from one convolution to the next. Convergence to the final solution is
usually obtained within some tens of iterations, a number that increases with the amount
of amplifier saturation.

3.1. Numerical verifications

We tested the accuracy of our state-variable model against the exact solution of the
propagation equations, starting from the experimental setup used in [5]. The input signal
was a single-wavelength sequence of two contiguous packets of duration 400 us each,
the first with power 1 mW and the secondlmW, enteringL = 14 km of dispersion
compensating fiber (DCF) at time= 0.2 In the model, we used; = 0.46 dB/km, o, =
0.6 dB/km,c;, =2 [W~1km~1], corresponding to a dispersion compensating fiber (DCF)
with signal wavelengthi ; = 15453 nm, and pump wavelengi), = 14547 nm [5].

2 Another interpretation of the same input sequence may be the following: at tim@, 10 channels (on
very closely spaced wavelengths) havingy MW power each are fed to an initially unsaturated Raman ampilifier,
while at time 400 ps nine out of ten channels are dropped.



A. Bononi et al. / Optical Fiber Technology 10 (2004) 91-123 97

04

F\r 500
V
0.3 =2 400 Ry
= L | E ool RS
X 024~ = 2 o n
PO 3 v
0.1 N— 100
0 0 : |
0 200 400 600 800 0 200 400 600 800
t [us] t [us]

Fig. 1. (Left) Relative pump change sensed by the signal, and (right) output signal power, for increasing levels of
pump powerPy = 0.64,0.70,0.77,0.86,0.97 W. Solid lines: exact solution (1); dashed lines: model (16). Input
signal shown (right) magnified 50 times.

Figure 1 shows the relative pump change) (left) and the output signal power
S;’Ut(t) (right) in the absolute time frame= r,(0), calculated as in (16), (11) (dashed
lines), and the exact numerical solution of the propagation equations (1) (solid lines).
Five different curves are reported in each sub-figure, obtained for pump pdwyets
0.64,0.70,0.77,0.86,0.97 W, corresponding to saturated gains of 20 to 24 dB, respec-
tively.3

In the figure, we first note that the effect of deep saturation is to alter the steady-state
power ratio between the first and the second pulse, starting fyd@ih the linear regime,
down to 2/3 at Pp = 0.97 W. We next note that the approximate solution (16) very well
reproduces the exact numerical solution as long as0.3, the approximation becoming
worse when the linearizatiort " = 1 — I fails, i.e.,I" > 0.3. An analytical explanation
of this fact will be postponed to Section 4, Eq. (26). The time constants of the transients are
somewhat faster than (but comparable to) the walk-off tilhe= 140 us, while the prop-
agation delay within the amplifier i5/v; = 70 us, wheray, = 2 x 10° m/s. A thorough
discussion of the time constants is postponed to Section 5. One notable difference with
transients in EDFASs is the presence of ringing in the step response even in a single Raman
amplifier. Such ringing disappears at small pump powers, and will be further discussed in
Section 5.

As stated in the Introduction, one concern in the transients are the power surges that
may damage the optical components. As seen in the figure, the power spike at the signal
leading edge can be many times the steady-state saturated value reached after the transient,
and can be quantified through thewer sagacross the pulse, which we define as

out .. _
sact Y =0 g
S xS

’

where ss denotes the steady state values reached after the transient, and we used (11).
Hence the sag across the pulse becomes larger for increasing undepleted on/gff,gain

3 At such very large signal powers propagating inside the Raman amplifier, Brillouin scattering, which we do
not include in our equations, is known to deeply affect propagation [17]. However, the reason of using such very
large pump and saturated gain values is to test up to which level of pump depldtieraccuracy of the model
(16) versus the exact solution of (1) is acceptable.
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Fig. 2. Pulse sag (19) versus total output signal powgr =), S?Ut(xss) for various types of fiber, DCF,
NZDSF, SMF, having respectively Raman gaij), = [2.0,0.46,0.31] [W~1km™1], 1; = 15453 nm, 1, =
14547 nm, and pump attenuatidf.60, 0.28, 0.30] dB/km.

i.e., for increasing pumpy, but also for increasing stead-state saturation

xS=c- LiST SI.OUt’
Po
where we haveonjecturedthat such steady state saturation increases linearly with the
total signal power relative to the pump, a relation that will be shown to approximately hold
in the next section, where it will be shown tha& 4 /A, beinga; the average signal
wavelength. Hence from (8) and (18) we see that the pump p&weancels out in the
exponent, so that the sag in dB is

(18)

SAGgs = (10 Iogloe)c]—p ) >S9 (19)
ap Ap -

from which we conclude that the power sag on a pulse depends on {@tdieutput sig-
nal power and (ii) on thefiber typethrough its Raman gain, and its pump loss. Figure 2
shows the power sag (19) versus total output signal patee= Y, S°"(x*S) for various
fiber types. We note that for the DCF in our example, the sag exceeds 3 dB (large satura-
tion effects) when the output signal power exceeds 50 mW, while it remains below 1 dB
(negligible saturation effects) when the signal power is below 10 mW. A power larger than
100 mW is required to significantly saturate a Raman amplifier that uses SMF fiber.

The Raman saturated case is very similar to the case of saturated EDFAs. Starting from
Eq. (6) in [4], one can prove that the power sag across a pulse in an EDFA is given by

SAGs = (1010gge)Bj7 Y (SU(x®9 — SIN), (20)

where the parametdt; and the fluorescence timeare defined in [4], and their product is
proportional to the inverse of the intrinsic saturation poﬁ}j‘éh hv;/B;t [W] by the pho-

ton energyhv;. Therefore by similarity with such result, one may define for the saturated
Raman amplifier thentrinsic saturation power ak ; as

sis Lt % (21)
Aj Cjp
and thus the previous result can be reworded by saying that the sag exceeds 3 dB when the
total output power exceedg@0log,ge) = 0.7 times the intrinsic saturation power.
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Fig. 3. Example 2. (Left) Relative pump change sensed by the signal, and (right) output signals power, for pump
power Py = 0.86 W. Solid lines: exact solution (1); dashed lines: model (16).

We next provide a second example in which several WDM signals are fed to the same
discrete amplifier previously described. The input signals we used were three channels at
wavelength$15522, 15526, 15530] nm, each carrying a single packet of duration 800 ps
and power 1 mW. The packet on channel 1 entered the amplifier at t#r® the one on
channel 2 entered at= 400 ps, and the one on channel 3rat 600 ps. The injected
pump power was’y = 0.86 W, with signal Raman gains, = [2.1, 2.0, 2.0l W—1km~1,

Figure 3 (left) shows the relative pump change) and (right) the output signals power,

the exact solution (1) being in solid line, and the model (16) in dashed line. Again, the
reason why we used such large pump powers is to test the accuracy and the range of
applicability of the model. We note that the analytical solution very well matches with the
exact one. We can clearly see the effect of the pump-mediated signal to signal crosstalk,
the largest saturation occurring when all three packets are simultaneously present in the
amplifier. Note that the effect of one packet lasts for about one walk-off dimafter its

end. Hence the “memory” of the system, i.e. gésn recovery timgis slightly less than the
walk-off time in this example, and never exceefds Such walk-off time plays in Raman
amplifiers the same role as the fluorescence time plays in EDFAs. This will be evident after
the discussion in Section 5.

Having established that the model well matches the simulations, we now wish to
present more results of single-pump single-channel transients, in order to check similar-
ities and differences with the transients observed in EDFAs [4]. The discrete amplifier
for the next examples consisted bf= 10 km of DCF, with peak Raman gain coeffi-
cient cmax = 3.2 W—tkm=1, Pump wavelengtii, = 1450 nm, and signal wavelength
As = 1550 nm, with 1 mW peak input signal power.

We first illustrate the amplifier dynamics in a packet switching scenario. We started by
examining the case of one input signal packet of duration 400 ps, which is much longer
than the time response of the filtéf(z) in Eq. (11). In Fig. 4, dashed lines show the
dynamics of the relative pump depletio(y), and of the amplified Signﬂ?“t(t) when the
input pump power hasmoderatevalue of pumpPy = 200 mW. We note exponential-like
transients which last around 100 ps, which are quite similar in nature to those observed in
EDFAs [4]. We will show in Section 5 a simple formula for the transient time constants in
this moderate pumpase.

If the pump power is increased tdage value P, = 400 mW, we note in Fig. 5, dashed
lines, that the time behavior of(r) and S;?“t(t) starts to show a resonance overshoot,



100 A. Bononi et al. / Optical Fiber Technology 10 (2004) 91-123

0.04, 8
g B gt oy
0.03 — — E6— HHIH .
g i
50'02 .......... T o 4 | |
X 2| 1 B
0.01} - 52
! ° | L L L
i et 0 '
0 200 400 600 0 200 400 600
t [us] t [us]

Fig. 4. Time evolution of (left) relative pump depletion, and (right) output signal, in response to (dashed) a single
packet of duration 400 us; (solid) a train of pulses of durafign= 20 us and pulse separatidip = T). Input
pump powerPg = 200 mW.
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Fig. 5. Time evolution of (left) relative pump depletion, and (right) output signal, in response to (dashed) a single

packet of duration 400 us; (solid) a train of pulses of durafign= 20 ps and pulse separatidp = T),. Input
pump powerPg = 400 mW.

which is not present in transients involving EDFAs [4]. Moreover, a larger pump implies
larger signal-induced gain saturation, which justifies a larger power sag across the output
packet. We already saw in Eq. (19) that the power sag across a pulse is directly proportional
to the total signal power, which linearly increases with pump power. Such behavior is
different from saturation in EDFAs, Eq. (20), where the power sag is still proportional to
the total output signal power, but such powaturatedor increasing pump power, since

the population inversion cannot exceed a maximum vafiemaller than one [4].

Next, we examined the response of the amplifier to an input train of equally spaced
pulses of fixed duratioff, = 20 ps, a time much shorter than the time response of the filter
h;(t). The results are displayed in Figs. 4-6 in solid lines.

In Fig. 4 the gap between pulsedlis= T}, and the input pump power & = 200 mW.

We note that the response to the first packet obviously coincides with the dashed-line curve,
while the response to the following packets exceeds the dashed line, since the pump re-
fills in the lull between packets, with a time constant that we can infer from the upward
transition of the dashed-line curve oft). Physically, such pump refill is due to fresh
back-propagating pump photons reaching the traveling signal pulse.
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Fig. 6. Time evolution of (left) relative pump depletion, and (right) output signal, in response to (dashed) a single
packet of duration 400 ps; (solid) a train of pulses of durafign= 20 us and pulse separati@p = 37),. Input
pump powerPg = 400 mW.
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Fig. 7. Output power excursion for the surviving channet 15524 when adding or dropping 7 out of 8 channels.

If the pump value is increased to 400 mW, as seen in Fig. 5, both the pump depletion
and refill processes become faster, so that we see a faster power sag across the pulses, as
well as a larger peak power on the pulses following the first one. In any case, we note that
the locus of the peaks follows the power profile of the dashed line.

In Fig. 6 we keptPp = 400 mW, and increased the spacing between adjacent pulses to
T, = 3T,. By comparison with Fig. 5, we note that the larger pulse spacing leaves more
time to the pump to refill, so that the next pulse enjoys a larger pump and thus a larger gain,
and thus it depletes the pump faster, with an ensuing increased power sag.

We next investigated the behavior of the same Raman amplifier when channel add-
drop operations are performed. The amplifier now Wag 8 equally spaced input signals
(channel spacingA\A = 0.8 nm) from A1 = 15524 to Ag = 15579, with input power
—2dBmy/ch, asin [4]. Figure 7 shows the output power excursion for the surviving channel
A = 15524 when adding/dropping 7 out of the 8 channels, for pump paet 200 mwW
and Po = 400 mW. We note the increased asymmetry between add and drop transients for
the larger pump value, because of the larger saturation that follows the add operation. The
drop transients are similar to those observed in Fig. 1.
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4. Steady-state equation

The value of the steady-state depletiGiwhen CW signals are applied to the amplifier
can be obtained from the dynamical equation (16) by using time invariant output powers
S,

J

N
S5 Z S;)ut(xss)wj’ (22)
j=1
where we defined the weighis; 2 [°0, hj(t)dt. If we use theexponential approximation
(A.3) and approximatg = 1, we getw; = hjod /o, = X /(Ap Po), so that
N
5SS As Z./=1 S;)ut(x%)
Ap Py
an expression valid when the signals are closely spaced, at an average wavelembis
relation shows thahe depletion is approximately proportional to the ratio of total output

signal power to the pump power
In (22) the dependence aff® can be made explicit,

: (23)

N
xSS= Z wj Slijne{—“jL-i-gj(l—Xs%}’ (24)
j=1

and such transcendental equation is similar to Saleh’s equation for the steady-state in-
version in EDFAs [4]. Such equation should also be compared to a similar equation for
the depletion” at steady-state that the authors have obtained under the impulsive pump-
depletion approximation [12],
N
rss=Y"¢j,k;sMel-estreie ™) (25)
JPIN g ’

Jj=1
where for long amplifiers and large gain, i.e,L > 1 andQ; > 4—5 (see Appendix A),
one finds

1—e~@Qj—epl 1

apQj—aj apQj
If also I"'SSis sufficiently small, so that—/">°= 1 — I"SS, the two equations (24) and (25)
essentially coincide, i.ex35= I'SS. That this is indeedxactlyso, one can convince himself
by recalling that in the impulsive-pump depletion modefs was found to be essentially
independent of [12], hence relation (13) gives
I —
xSS= m — ['SS (26)
fyP@dz

However, (25) holds also for much deeper saturation, i.e., when the approximaﬁ?)s@
1 ISSfails. We were forced to introduce approximation (5) in order to make the dynamic
model tractable.
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5. Timeconstants of transients

The time constants involved in the transients can be easily made explicit when using the
single-pole exponential approximation of the filter (A.3). In such case, in fact, Eq. (16) can
be reduced to an ordinary differential equation (ODE) as follows. Define

xj (1) = ) @ (1) (27)

which is an ODE in the unknow; (1),
. 1
5j(1) = =—x; (1) + hjoSTD), (28)

wherer £ d/ap,. Now from (16) writes as (1) = Z?}:lx]' (1), and therefore

N
1 :
i) =—=x(t)+ Y hjoST(p)el~rtretxOh, (29)
T Pt

Such ODE is quite similar to the dynamical equation of the average inversion in doped fiber

amplifiers [4]. The time constant= d/a, plays here the role of the fluorescence time in
EDFAs. The only significant difference from EDFAs is that the pump power does not
explicitly appear in the ODE, but is hidden in the coefficigits and in the log-gaing;.

How to include pump modulation, or pump relative intensity noise, will be explained in
Section 6.

To understand the effect of the approximations involved in the derivation of (29), we
compared the “exact” solution of (16) and the “approximate” solution of (29) when a pulse
of duration 1 ms enters a transparent (i.e., of unit overall gain) distributed Raman amplifier
whose transmission fiber is a non-zero dispersion shifted fiber (Raman gain coefficient
cjp =07 [W~1km™1]) of increasing length. The relative pump depletion is shown in
Fig. 8, with the exact solution in solid line, and the approximate solution in dashed line.
We clearly note that the exponential approximation of the filter eliminates the ringing from
the step response. Such ringing, however, is smaller and smaller as the amplifier length
increases and the exponential approximation becomes closer to the actual filter response.

Having observed the similarity of (29) with the ODE governing transients in EDFASs,
we next perform a linearization of the ODE (29) as is done in [3] for EDFAs, to find the
response tav step input WDM signals and its time constant.

We start by writing the input signals and the state variable as a CW average value plus
a deviation with respect to the CW:

SN(1) = S35+ AS; (),
x(t) =x55+ Ax(t). (30)
With such definitions, the dynamic gain is thus from (10)

Gj(t)=G%e® Ax() ~ GS(1—gjAx(0), (31)
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Fig. 8. Relative pump depletion for a distributed Raman amplifier based on a non-zero dispersion shifted fiber
of increasing length. at transparency, when the input signal is a gate of duration 1 ms. Solid: solution of (16).
Dashed: solution of (29).

being G3Sthe steady state signal gain, and the approximation being accurate to within 5%
wheng; Ax(t) < 0.3. Substitution of (30) and (31) in (29) leads to
xSS Y SS SS SS,
Ax:—?—7+ h,o(S +AS)(GJ. —ngij) (32)
j=1
which after subtraction of the steady state value obtained through (29} with simplifies
to

N
- - Zh,osssGs [Ax+ Y hjoGPAS;,
j=1

where we dropped the small term proportionatts§; Ax. Thus we finally get

Ax(t) &
k() = —— + > hjoGTAS; (1)
j=1

which corresponds to a first-order low-pass filtering\d; (r) with time constant

d d
Teff = ﬁap ~ /agou[ S% (33)
14+ Z, " a/p SSSGSS(L) 14 S.s (x

WhereSssls the steady-state input power of tjid signal before the step discontinuity, and
GSS(L) |s its saturated steady-state gain before the step, and we used (A.4) to approximate
Fy
hiogj = 1—eorby= 22
jo&j = dQ] Qj( )= d
The second approximation in (33) applies when the signals all have a similar gain, be-
ing A, their average wavelength arf their intrinsic saturation power (21). Thus, as
seen in Fig. 9, power transients in saturated Raman amplifiers can be somewhat faster
than the time constaat/«, characterizing pump-induced relative intensity noise (cf. [13],
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Fig. 9. Transient time constant (33) versus total output signal péysee >_; S?”‘(xss) for counter-propagating
pump, for various types of fiber (data as in Fig. 2).

see also next section) depending on the ratio of the total steady-state saturating power
Piot = Zf’zl Sj.’”t(xss) to the intrinsic saturation power, a behavior very similar to that of
saturated EDFAs [3,14].

6. Including pump intensity variations

Itis possible to include pump relative intensity noise (RIN) or pump modulation in our
analysis, and relate our results to those in [13]. Recall that in (3) we assumed a constant
injected pumpP (¢, L) = Po. Assume instead that(,, L) = Po(1 — r(t,)), wherer(t)
is a smalft zero mean stochastic process. After linearizatioh = 1 — I, the second
equation in (3) becomes

P(tp,2)=P@)(1—rtp)(1—T(tp,2)) = P@)(L—r(tp) — I'(tp,2)),

where we have dropped the negligible ter(,) " (z,, z). It is thus clear that the pump

RIN termr(t,) is physically equivalent to the pump depletion tefi,, z) as far as the

signal dynamics are concerned. Following the same steps as in (3)—(11), we can thus define
a RIN-induced pump depletion sensed by the signals as

L

1 ,
x(1) = 7= / e L=y (1 + d7)y de! (34)

p
0

so that the output signal power is

S9Uy) = S (1) exp{—ajz + g7 (1 — xr (1) — x, (1)) }. (35)

4 This model therefore does not apply to ON/OFF pump modulation, sometimes used in multi-pump amplifiers
to reduce the pump-to-pump interactions [21].
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where for clarity we have called the depletion (12) caused by the signals. It is clear
that the dynamical evolution aof,(z;) is completely determined by the RIN process
through (34), and if we make the change of variabte —dz’ we get

e—apL

L,

0
xp(t5) = / e~ @/ DTyt — 1) dr (36)

—Ld

which can be interpreted as a convolution operation [£5},) = r(t;) ® AN (1), where

RRIN() 2 ie—wp/d)(tﬂd)n(t + dL/Z) (37)
dL, dL

is the impulse response of a non-causal filter, which is zero outside the intebvakK

t < 0. We note in passing that such form of filtering due to the walk-off effect can be found

also in other applications, such as for instance the study of cross-phase modulation, and a

simple expression of its frequency respois8'N( f) is known [16], with a 3 dB corner

frequencyfo = ap/2nd = a,v/4n [13]. When the truncation due to th&(-) function

is absent, i.e., for long amplifiess, L > 1, the above frequency response simplifies to an

anticipating first-order low-pass filter,

hRIN(r) & pRIN =@/ a+Ld)y (¢ 4 ), (38)

whereU (¢) is the unit step function, antR'N = 1/dL,. The filter is non-causal, since
the signal at retarded timg is affected by the future values of the pump RIN that have
walked past the signal. As a numerical example, if we consider an SMF fiberyyith
0.28 [dB/km] and group velocity, = 2 x 108 [m/s], we getfy ~ 1 [kHz].

We can now define a total pump depletion state variable as

(1) 2 x () + (1)

which is thesuperposition of the two perturbatiortidence from (14) we have

x(ts) = xp(t5) + x (t5)

N L L
1 R _ _ .
=x,(t;) + I Zcp.,'/e op(L “):/S'j”(ts +d(z1— 22))
j=1 0 21
x G j(z2) exp[—gj (z2)x (1s + d(z1 — 22), 22) | dzz} dza, (39)
and with our usual simplification we get
N .
x(t) Zxr(t5) + Y SN (el A& A @ (1) (40)
j=1

Using (40) and (35), we can thus give the block diagram shown in Fig. 10 of the
Raman amplifier as a transformation of the signals. Such diagram could for instance be
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Fig. 10. Block diagram of the Raman amplifier, as a transformation of the input signals.

straightforwardly implemented in a commercial block-diagram simulator, such as Matlab
Simulink™ [7].

When the walk-off timelL is large, the gating functiof/ (-) does not affect the filters
impulse response and one can use the exponential approximations (A.3) and (38), so that
from (27) and (40) we have

x(t5) = X, (t5) + ) x; (1),
J

and by taking time derivatives and using (28) and its counterpart forRIN,

X (1) = —%xr (1) + h§Nr(r + La), (41)

one finally gets the complete ODE that includes pump RIN:

N

: 1 i\ (ca;L4gi [l

$(t5) = = 2x(t5) + Y hjoST (t)el = TN L G (1 + L),
j=1

5 Such relation is obtained from the Laplace transform of the RIN filter (38),
H(s) =h§NesLd /(s + 1/1),

with ¢ =d/a), so that
1
(s + —)X,.(s) =hBINR(s)es,
T

whereR((s) is the Laplace transform of(z). We thus get

X,
$X(s) = _g BN R(s)erLe,

and taking inverse Laplace transforms one gets (41).
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7. Themultiple pump case

It is possible to extend the single state-variable model to the case where multiple
counter-propagating pumps are present. The key idea is to first calculate the “bias point”
of the extended model by computing the exact evolution of the pump powers aiong
the absence of signals (we call these tinsaturatedpump profiles), taking into account
pump—pump interactions, and then use such information to keep track of the dynamic
signal-induced depletion of each pump by means of one state variable for each pump.

Suppose we havi®f counter-propagating pumps, all propagating backwards at speed
and N WDM signals propagating forward at speed The formal solution to the prop-
agation equations in the retarded frames in this case becomeg,ot,..., M and
j=1,...,N,

L
Py(tp.2) = Popexp(—ap(L —2) + Y aly cpn [ Pulty,2)d2/

= Iy, ), (42)
Sj (ts,2) = Slll'n (t5) eXF(_OljZ + Z?,/;l Cjp /02 Pp (s + dz, Z/) dZ/):

where again we have neglected the direct signal-signal Raman crosstaIIPO}aaAd
P,(tp, L) is the constant injected power of tiwh pump, and again we defined the pump
depletion factors as

N L
Ty(tp, 2) = Zéjp / Sty —dz, 7 d7 (43)
j=l z

for p=1,..., M. Again we linearizee=/» =1 — Iy, and the integral term in the signal
equation in (42) becomes
Z
Cip / Pty +dz',2)dz' = gjp (@) (1 — xp(t5, 2)),
0
where
M L

P,(z) = Pop eXp(—ap(L —2)+ Zcpn/ Pu(Z) dz/> 2 Po, fp(2)

n=1 7

is the (known)unsaturatedz-profile of the pth pump withshape factorf ,(z), and we
defined

A —
gjp()=cjp fé Pp(Z)d7,

A Jg FpE)Tps+d 2 d7
xp (t57 Z) - f(; fp(z,) dz’

Now, as in (10), the signal power can be written as

(44)
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M
Si(ts,2) = Sij”(ts)Gj(z) expy — Z gjp(@)xp(ts, z)}, (45)
p=1

where theunsaturatedsteady-state gain is
Gj(z)= o1 8ip(@) "

Substitution of (43), (45) in the definition (44) gives for the state varialb)gs;, L) 2
xp(ts)a

L L
1 & _ ,
xp(ts)=L—Zéjp/fp(m){/S'jn(ts +d(z1— 22))
p j=1 b

<1

M
x Gj(z2) exp[— Z gjn(z2)xn (ts +d (21 — 22), Zz):| dzz} dza, (47)

n=1

where for brevity we defined , 2 [OL fp(z))dz. Again such complex equation can be
drastically simplified by using the termgs, (L)x, (t; + d(z1 — z2), L) instead of the ex-
act termsg j, (z2)x, (ts + d(z1 — z2), z2) in the above integral. After the usual change of
variables, and after dividing and multiplying by thaesaturated gairG ;(L) in (46), one
gets

N dL M
xpts) = f S — 1) exp[—a.;L + > gjn[1—xults — r)]}

j=19% n=1
L—t/d

i v / ) ,
XdL,,G,(L)( / Fr@)Gj +T/d)dz)dr,
0

whereg;, = g;,(L), and the integration is again recognized as a convolution operation.
Hence, the state variables, (z;) approximately satisfy the followingystem of implicit
integral equations

N M
xp(ts) = Z{Sij‘n(ts)exp[_ajL + Zgjn [1_ xn(ts)]]} 02y hjp(ts)s

j=1 n=1
p=1...,M, (48)
where the filters impulse responses are
L—t/d

=i | 7 e (o ez | (1242
h]p(t)—deGj(L)|: / fp(Z)G]<Z +d>dz:|17( N ) (49)
0

Note that such filters depend on the (possibly flattened) overall unsaturated gé6).
Such filters can be numerically evaluated once the exact unsaturated pump power profiles
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Fig. 11. Block diagram of Raman amplifier witlf counter propagating pumps andWDM input signals.

f p(z) are known from the solution of the propagation equations for the pumps. Although
it may be possible to introduce further simplifying assumptions to approximate the pump
profiles f ,(z) [10,18], still a closed form for the filters does not seem readily obtainable,
given the complicated form of the integrals in (49).

It is interesting to note that our model can be described by the input-output block
diagram shown in Fig. 11, and can thus be implemented in commercially available block-
diagram simulators [7]. In the scheme, we have also introduced further functional blocks:
(i) the RIN filtersh¥N(z), p=1,..., M, Eq. (37), which take into account the (possibly
present) relative intensity noise (RIN) or modulation on each pump; (ii) the pre-emphasis
gain blocks Tilt, j =1,..., N, which are used as a simple approximate way to account
for the power tilt in the signals’ bandwidth due to direct signal-to-signal Raman crosstalk,
which can be significant in distributed Raman amplifiers and takes place at the input, be-
fore amplification, as already discussed at the end of Section 2. Such method has already
been successfully applied to saturated Raman amplifiers at steady state in [12].

In summary, using pumps leads td/ state variables,(t;), p =1,..., M, whose
time evolution is found by iteratively solving the system (48). The procedure to solve the
gain transient problem is the following:

1. Compute the pump evolution aloag P ,(z) in the absence of signals. This implies
solving the steady-state propagation equation for pumps only, accounting for pump—
pump power transfer;

2. Compute and store the MN filter responses, as per (49);

3. lteratively solve the implicit system of update equations for pump depletions (48).

In essence, the procedure amounts to calculating the steady-state ariglfipointwith-
out saturating signals (points 1 and 2), and then evaluating the time-varying signal-induced
pump depletions from such bias point.
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Fig. 12. Distributed multi-pumped Raman amplification in a 80 km NZDSF: (a) Raman saturated steady-state
gain and fiber loss profile, and (b) output power time evolution of channels at 1545, 1565, 1585 nm.

The steady-state values of the state variables when the signals are CW are easily found
as

N
x$S=Y {shelme bt i sl gy, 0),  p=1..... M,
j=1

and clearly depend on the valueat= 0 of the filtersH;,(w). Once such equations are
solved, the signal-saturated steady-state gain profile (45) is obtained.

It should be clear from the derivation that the main limit of such extended model is that it
makes a distinction between a group of slightly perturbed pumps and a group of (possibly
strongly) modulated signals. For instance, in resonant pumping, the pump closest to the
signals behaves itself as a signal for the pumps at lower frequencies, and we should expect
some discrepancy between model and simulation in such case.

To test the range of applicability of our extended model, we investigated several multi-
pump schemes proposed in the literature, two of which will be presented in the next section.

7.1. Numerical verifications

We applied our model to two recently proposed Raman amplifiers, to test their dynamic
behavior in deep saturation in order to get a realistic idea of the accuracy of our method.
In this subsection we present the obtained results.

(A) We first consider the distributed amplifier presented in [19], which has an 80 km
non-zero dispersion shifted fiber (NZDSF) with back-propagating pumps at 1423, 1443,
1464 and 1465 nm, with total input power of 590 mW. We consider the amplification of 80
WDM signals in the [1520, 1610] nm band, with 0 dBahm input power, which drive the
amplifier in deep saturation.

In Fig. 12(a) we show the steady-state gain versus wavelength. The solid line shows the
prediction of our model, the dashed line the exact solution of the complete propagation
equations, and the dotted line—almost completely superposed to the previous one—the
solution of the propagation equations when ASRS and DRB are switched off. The fiber loss
profile across the channels is also shown in dash-dotted line. We note that in such heavily
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Fig. 13. Discrete multi-pumped Raman amplification in a DCF with length 5.5 km: (a) Raman saturated
steady-state gain, and (b) output power time evolution of channels at 1546.3, 1566.7, 1587.1 nm.

saturated amplifier, noise and DRB are negligible, and our model very well matches the
exact solution, the error with respect to the complete solution being less than 0.2 dB across
the whole bandwidth, and mostly due to the approximations in the Tilt blocks [12]. When
compared to the unsaturated gain profile [19], one notes a general gain decrease, and a
pronounced tilt due both to saturation and to the signal—-signal direct Raman interaction.
In [19] it was noted that it is possible to change the Raman pumps in order to counteract
such direct Raman tilt.

We then ON/OFF modulated all 80 channels with a random pattern of 10 bits and a bit
duration ofT = 200 ms, thus emulating time slotted packet transmission. The time behav-
ior of three selected channels, marked with big dots in Fig. 12(a), is shown in Fig. 12(b),
where solid line curves are the output of our model, while dotted lines are the output of the
complete time-dependent propagation model (which neglects ASRS and DRB). We note
sharp transients across the packets, which indicate a markedly saturated dynamic regime.
To give an idea of the execution time savings, running the computations in Matlab on an
800 MHz Pentium IIl, takes 2 min for our model to both compute the steady-state profile
and the transient behavior, while it took over 2 h for the complete solution of the propaga-
tion equations.

(B) We next consider the discrete Raman amplifier presented in [20], which has a 5 km
dispersion compensating fiber (DCF) with 6 back-propagating pumps at 1428, 1445, 1467,
1484, 1491 and 1507 nm, with total injected power equal to 968 mW. We consider 24 input
WDM signals in the range [1530, 1610] nm, with 4.5 dBsh input power, as in [20].

Figure 13(a) again shows the steady-state gain, and we note a better match between
model and exact solution as compared with the distributed amplifier, because of the absence
of direct Raman tilt. We then applied random ON/OFF modulation to all 24 channels with
the same slot time of 200 ms, and the time behavior of the 3 selected channels marked in
Fig. 13(a) is shown in Fig. 13(b). From the figure, it is clear that the amplifier is deeply
saturated, and the match of our model with the exact solution is quite satisfactory, with
the largest dynamical error being smaller than a few percent, and occurring at steady-
state.

As for the computation times, our model took around 1 min to run both the static and
dynamic simulation, while the exact static and dynamic solutions took about 15 min. Such
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Fig. 14. Test of model accuracy with resonant pumping. (Left) Static and dynamic gain versus pump distance.
(Right) Static and dynamic error between model and exact solution versus pump distance.

shorter time, obtained by keeping the same time resolution as that of the example (A), is
due the fact that the amplifier is shorter, and the number of channels is smaller. Please note
that the savings of our analytical model become more evident when the channel count is
larger.

The multi-pump model has one extra limit with respect to the single pump model. Since
the model makes a fundamental distinction between pumps and signals, it becomes less
accurate in those cases in which the distinction is blurred, such as in resonant pumping.

To test such case, we tried a simple experiment. We launched a single channel at
1580 nm, consisting of a single 400-pus-long rectangular pulse of 1 mW input power, into
a 10 km fiber with peak Raman gain coefficient 3.2 ¥m~1. We used two counter-
propagating pumps: the first had 240 mW input power and was fixed at 1480 nm, i.e., at
peak signal gain. The other had 180 mW input power. We recorded in Fig. 14 (left) both
the static and the dynamic gain as the second pump was moved to lower wavelengths than
1480 nm. The static gain is the one experienced by the portion of the pulse that has reached
steady-state, while the dynamic gain is the largest one in the transient, in practice coincid-
ing with the unsaturated gain experienced by the leading edge of the pulse. In the figure,
we note the initial decrease of the gain because the second pump provides less gain to
the signal, followed by a subsequent increase of the gain because the second pump starts to
amplify the first pump at 1480 nm by resonant pumping. In Fig. 14 (right) we also recorded
both the static and the dynamic error, i.e., the largest and the steady-state error between the
model and the exact solution of the propagation equations. The relative pump depletions
for both pumps remained below 0.135. We note that the error is largest at 100 nm pump
spacing, i.e., at resonant pumping, and can be more than 4 times larger than with normal
pumping, although it remains below 0.2 dB in this example.

8. Co-propagating pump

Let us now consider the case of co-propagating pump. We will closely follow the deriva-
tions for the counter-propagating pump. In this case both pump and signals are injected at
zi = 0 and propagate at group velocity andu, in the positivez direction, with walk-off
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d = D(Ay — 1) dictated by the GVD parametdd.® Neglecting direct signal crosstalk,
the solution at coordinate) = z < L of the propagation equations for the co-propagating
pump configuration in the retarded frames is obtained from (2) as

: S5, 2) = St exp—atjz + ¢jp [5 P(ts +d7', 2 d), (50)
P(ty,z2)= Poe= %2 Itp.2)
where again we defined
N z
F(tp’z)ézéjpfsj(tp—dZ/,Z/)dZ’, -

j=1 0
By closely following the derivation for the counter-propagating pump, one defines the
unsaturated log-gain &g (z) 2 (1—e*%)cj, Po/ap, SO that the unsaturated gatiy (z)
is still given by (9), and the pump relative depletion as
L

1
x(ts) = L—/efa"zf(ts +dz,z)dz. (52)

p
0

With standard manipulations, one arrives at the following update equation for the pump
depletion:

<1

N L
x(ts) = Li Z@jp/e_o‘!’zl{ / Sijn(ts +d(z1— Zz))

Pi=1 % 0
x Gj(z2) ex;{—g.,' (z2)x (ts +d(z1 — z2), Zz)] dzz} dzi. (53)

We may try here the same trick as in the counter-propagating pump case, namely using
exp—gjx(t; +d(z1 — z2), L)] instead of the correct term ejxpg ; (z2)x (t; + d (21 — z2),

z2)] in the above integral. Such approximation make sense for co-pumped amplifiers whose
length L corresponds to maximum signal gain. With such assumption, one gets again the
update equation (16) for the depletion, Whﬁ??ét(ts, x(ty)) is given again in (11), but now

h; is the impulse response of the following linear filter:

L
= Cir G (o 1+ L) gz | LE4L/2
h](t)_deGj(L)[ / e Gj(z +d)dz:|17( ¥T3 > (54)

—t/d

As we see, the filter is non-causal (i.e., it extends to negative time) whe@, i.e., when

the pump is faster than the signals, since the depleted pump reaches past sections of a
packet and distorts them with echoes of the future. Appendix A provides a closed form
expression of the above filter.

6 Such approximation is valid when pump and signals are either both to the left or both to the right of the zero
dispersion wavelengthg, as in SMF and NZDSF fibers. The above does not hold for NZDSFibers, where
Ag is to the left of the C-band, but to the right of the pump wavelength.
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Fig. 15. Filter impulse respongg (¢) (A.5) for co-propagating pump, in the case in which the pump is faster than
the signal.

8.1. Numerical verifications

In the following, we present a somewhat artificial example in which the fiber parameters
of the Raman amplifier are those of the DCF used in the calculations in Fig. 1, but the
dispersion isD = +110 pgnm/km and thus the pump is faster than the signal, in order to
highlight the effect of an anti-caushyj (¢) filter.

Figure 15 shows:;(r) in (54), numerically evaluated as per (A.5) in Appendix A,
for an L = 14 km amplifier made of fiber with Raman coefficienf = 2 [W-1km=1],
with signal wavelength.; = 15453 nm and pump wavelength, = 14547 nm, with a
co-propagating pump@Py = 640 mW. The filter is zero beyond< —dL = —DAAL =
—0.15 ps.

We next made the following experiment. The same amplifier was first counter-pumped,
and then co-pumped with the same pump power to check similarities and differences
between the two schemes. The input signal in the counter-pumped scheme is the same
two-pulse (1 mW pulse followed by a 0.1 mW pulse) single-channel sequence used in
Fig. 1, with duration 400 ps per pulse. Each pulse was long enough to observe the com-
plete saturation transient on it, as in Fig. 1. The time waveforms of the output pulses are
shown in Fig. 16, left column. We are already familiar with the large spike on the leading
edge of the first pulse.

We then used the inverted sequence (0.1 mW pulse followed by 1 mW pulse) to feed
the co-pumped amplifier, but now the pulses had a much shorter duration of 0.2 us, long
enough to observe the complete saturation transient on them. The output pulses are shown
in Fig. 16, right column. We note here that the power spike is on the trailing edge of the
pulse, an effect due to the fact that the pump overtakes the signal, and is thus connected
to the non-causality of the filtel; (r). In the insets, we also show the time behavior of
the pump depletion(¢). The top row figures were obtained for the same injected pump
power Pp = 640 mW, while the bottom row figures uséd = 400 mW. It is known that
in the unsaturated regime co- and counter-pumping with the same power produce the same
unsaturated gain. This is visible in the figures, since the leading edge of the pulse in the
counter-pumped scheme and the lagging edge of the pulse in the co-pumped scheme expe-
rience such unsaturated gain, and thus have the same power level.
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Fig. 16. Power out of a 14 km amplifier for the case of counter-pumping (left column) and co-pumping (right
column), for injected powePy = 640 mW (top row), and’p = 400 mW (bottom row). Relative pump change
x(t) shown in the insets. Solid lines: exact solution (1); dashed lines: model (16).

Solid lines represent the exact solution of the propagation equations (1). By comparison
between left and right columns, we note that the amount of saturation, and thus power sag
on the pulses, is about the same in the two schemes.

Dashed lines represent the solution of the model (16). Such lines are coinciding with
the exact solution in both cases of counter-pumping (left column) and are thus hidden by
the solid line curves, since the depletiofr) is well below 30% in both cases.

On the contrary, we note that the model for co-pumping is much less precise, with an
error on the steady-state level that increases with increased pumping. We note from the
figure that the reproduction of the transient is acceptable, with error below 5%, when the
depletionx (¢) remains below 6%.

In any case, we note that the model is able to correctly reproduce the time constants of
the transients in both cases.

Note that the major problem in the experimental observation of power transients in the
co-pumped scheme is connected to the very short transient times, of the order of tens of
nanoseconds, and that the switch-on and switch-off times of the pulses must be in the
nanosecond time scale order to reproduce the same transients we obtained in the simu-
lation. If one uses an optical modulator with switching time comparable to those of the
transients, one gets a much smoother time profile of the output pulse.

Finally, we note from the exponential approximation (A.6) of the filie(r) that the
fast transient times in the co-pumped case are a consequence of the well-known difference
of the RIN filter bandwidth in the co- and counter-propagating configurations [13,15].
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9. Conclusions

We presented a comprehensive analytical treatment of transient gain dynamics in satu-
rated Raman amplifiers. Although the exact solution of the propagation equations is always
simple to compute using standard numerical integration of the propagation partial differ-
ential equations, such solutions require very long computation times, especially in large
WDM systems, and the numerical integration does not provide any insight into the nature
of the solutions and the quantitative importance of the various system parameters.

The modeling presented in this paper starts in fact from the propagation equations,
and by introducing sensible approximations reduces the extremely complex differential
equations to familiar forms in system and control theory, namely, block diagrams which
can be readily implemented using commercially available block diagram simulators.

The true value of such system model is twofold.

First, transient simulation times are almost independent of the number of WDM chan-
nels, as long as the level of saturation falls within the range of applicability of the model.
Therefore, enormous simulation time savings are possible for very large WDM systems,
such as those envisaged both for the next generation metropolitan area networks, and for
the all optical wide area networks. Solutions such as Internet protocol (IP) over WDM
packet networks are examples in which our models shall provide the only possibility of fol-
lowing the complex dynamics of the interconnected network of Raman and erbium doped
fiber amplifiers, thanks to the availability of simple block diagrams for both of them.

Second, block diagram models naturally lead to simple approximate expressions of the
main system parameters of interest. In this paper, for instance, we have derived closed form
expressions for the power sag across pulses and for the transient time constants versus
amplifier output power. The key amplifier parameters that shape the transients have been
identified and quantified.

The extension of the counter-propagating pump model to the multiple pump case in-
creases the applicability of the model to very practical wide-band amplifiers.

We have also proven that the co-propagating case can be partially tackled using the
same tools, although the accuracy is much less than that of the counter-propagating pump
case.

It may be conjectured that a mixed pumping scheme in which a small fraction of the
gain comes from co-pumping and the rest from counter-pumping could also be tackled,
although this remains an open question for future investigations.

Let us now move to the possible countermeasures against such transients. A natural
guestion to ask is the following: given that we have spotted a single state variable, like in
the EDFA, and that the update equations for such state variable are similar to those in the
EDFA, is it possible to gain-clamp the counter-pumped Raman amplifier? Classical gain
clamping in EDFAs consists of feeding the output signal at a specific wavelengtrck
to the input so that a standing wave exists at that frequency that saturates the inversion (i.e.,
the state variable) and clamps it [14]. The effectiveness of such feedback control relies on
the fact that the feedback delay is much smaller than the time scale of the transients inside
the system.

In the Raman amplifier, a perturbation of the standing wave operated by an incoming
packet ati; creates a “notch” in the pump power that propagates backwards to the input.
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The reaction time of the standing wave is at least the propagation time inside the amplifier.
Hence, by the time the standing wave reacts to the signal power variation, the notch has
propagated to the input, and thus we have an undampened power sag across the signal
output pulse.

In other terms: since the delay between the stimulus and the start of the control action
is of the same order as the time scale of the transients, then any feedback control system
is ineffective to dampen the transients. From the experimental results in [22] one can note
that gain-clamping a discrete Raman amplifier can in fact eliminate the large overshoot
on the leading edge of the pulse, caused by the unsaturated gain enjoyed by the pulse
front, because the standing laser light keeps the gain at deep saturation. However, from the
same results (Fig. 6 in that reference) one observes that the subsequent oscillations are not
dampened by the clamping laser, because of the control delay reason we mentioned above.

So, how can we counteract such transients? The simplest countermeasure is the adoption
of a hybrid dual-stage Raman—EDFA configuration, in which the first Raman stage does
not reach output signal powers large enough to deeply saturate it, and the following EDFA
stage can then be gain clamped. Another option is to control the pump current with a
control signal that is aware of the entering pulses. The analytical framework proposed
in this paper should make it possible to extend previous analytical investigations on gain
clamping [14] to the Raman amplifier as well.

Appendix A. Filtersand their approximation

In this Appendix we provide closed-form analytical expressions of the filter) in
(17) and (54) as power series expansions, along with simple single-pole low-pass approxi-
mations, valid for long Raman amplifiers.

A.1l. Counter-propagating pump

We first derive expressions far; () in (17). Let us start by considering the following
function:

L—y
1 ,
Fi(y) = / e =G (7 +y)d7.
0

G;(L)

Using (9), withQ; 2 ¢, Po/ar, [11], we get for 0< y < L

expl—a,L —a;y — Qe %k}

expl—a; L+ Q;(1—e L)}
L—y

X / eXp{ (ap — aj)z’ + Qje*“p(L*y)eo‘le} d7 .
0

Fi(y)=

Performing the following change of variahle= Q ;e=@ (-~ one gets
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Qj
e*“[)L+aj(L7y)7Q_/ . -1 .
Fi(y)= o/ @il et gy

%p
Qj exp{—ap(L—y)}

_ e 9J J— Q(a]-/a,,—l)

p j [¥(Q).;/ap) —¥(Qje "™ a;/a,)],
where¥ (x, a) is defined as

X
W(x,a)é/t—“e'dt, O<a<1,
0

and we have assumeg, # aj.7 Such function can be quickly numerically evaluated by
the following series

o0 n

llf(x,a)lef“z al

= n+1—a)n!

obtained by expanding the exponential in a Taylor series abeud and then performing
the integrations.
Therefore using the above results, one gets for the filter impulse response yvian
ey = 2 el i

dLya, ~/

—dL/2
x [¥(Qj,aj/ap) — lI/(Qje—Dlp(L—l/d)’ aj/ap)]n<tdiL/)’ (A.1)
and wheny, = o;
A 7Q
= Sl T @l DIEI O — il o=t L—t/d) f—dL/2>
hj(t) = T e @r/D'EI(Q)) — Ei(Qje )]n(iﬂ . (A2

For long amplifiers such as the distributed Raman amplifiers, in whigh1/«,, the filter
can be simplified to

hj@)= hjoe_(ap/d)t, (A.3)
where
6‘
hig= Iy
jo deX
A _ X .
2 Q./Q‘;‘f/“"qx(Qj,aj/ap), (A.4)

7f ap = aj, the function¥ (x, 1) is not well defined, since the integral diverges &t 0. However, in this

case one can use the exponential integral functicam)lzﬁ ffoo 7 Letdz,zeC,and get

Y e (O o= (L=Y)
o ¢ PY[Ei(Q;) —Ei(Qje P )]

Fi(y)=
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Fig. 18. Top row: filter impulse respongg; () (solid line) and its exponential approximation (dashed line).
Bottom row: its Fourier transforni/ ; (v).

where the functiory is close to 1 except for a small interval ¢f values where it swings
up to 2 fore; /o, < 0.8, as shown in Fig. 17.

The top row in Fig. 18 showi; (¢), Eq. (A.1), in solid line, and its exponential approx-
imation (A.3) in dashed line, for (left) a 14 km amplifier and increasing valug3,aind
(right) for O =5 and increasind.. All filters are zero beyond= d L, which is twice the
propagation time inside the amplifier (we assumee= 2 x 108 m/s). In the calculations,
we usedy; = 0.46 dB/km, a, = 0.6 dB/km, c;, = 2 [W~km~!], corresponding to a
dispersion compensating fiber (DCF) with signal wavelengte- 15453 nm, and pump
wavelength., = 14547 nm [5]. The bottom row in Fig. 18 shows the corresponding filter
frequency responsH; (v). The frequency oscillations are due to the truncation operated
by the I1(-) gating function, whose Fourier transform has a sine-like behavior with such
oscillations. Note that all filters have a 3 dB breakpoint at a frequency close to that of the
exponential approximation= «,/2rd.
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A.2. Co-propagating pump
In this section we will provide a closed-form analytical expression of the filigr)

in (54).
Let us start by considering the following function:

L
1 o
Fj(y):—G(L)/e TG +y)dZ.
j
-y

Using (9), we getfor X y < L

L
Fiy) = explo;y + Q) /e—(ap+a,-)z/—Q,-e-amz’—w s
! expli—a;L + Q;(1—e k)
¢

Performing the change of variable= Q ;e=%»@~Y), one gets

eaJ-LJere’O‘PL a; B B o ~
F](y):T/a)[V(stl"i__j)_y(Qje ap(L y)’1+_/)i|e “py,
O‘ij e “p ap

wherey (x, a) is the well-known incomplete gamma function,

X

A a—-1 —t
V(X,a)zft e 'dt, a>0,

0
wherea = 2 wheno; = «,. Such function can be quickly numerically evaluated by the
following series
x (_1)nxa+n

y(x.a)= Z (n+a)n!

n=0
obtained by expanding the exponential in a Taylor series abeud and then performing
the integrations. When is an integer, then we can use the exact expression

a=1l 5,
y(x,a)=(a— 1)!|:l—e_x Z%]

n=0
Therefore using the above results, one gets the filter impulse response as

h,(r):éfl <_£)H(t+dL/2>
- L, \"d dL

and thus
Cip pjL+Qjeert

dLp apQ

o _ o t—dL/2
x [J/(Qj,lJr a—j)—V(Qje apLt/d 1 4 a_jﬂH(idL )
p p

(A.5)

(ap/d)t

hj@t) = (Tt jap)
J
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For long amplifiers in whiclL > 1/« the filter can be simplified to
hj(t) = hjoe /D 1 <O, (A.6)

and zero elsewhere, being

A~ .L+Q.e—l¥pL )
L Cip e , o)
hjo= W)’(Q/,l+a—

d g )
Cpeit 1—e %1+ Q)) _ ¢jpei® (A.7)
I T |

where in the first line we dropped the secopd) term; in second line we neglected
Qje*"‘PL with respect tax; L, and approximated = 2 and thus/ (x, 2) = 1 — ¢* (1 + x);

and in the third line we assume&/ « 1. Such exponential filter has the same time con-
stant as the RIN filter for co-propagating pump [13].

References

[1] A.K. Srivastava, J.L. Zyskind, J.W. Sulhoff, EDFA transient response to channel loss in WDM transmission
system, IEEE Photon. Technol. Lett. 9 (1997) 386—388.

[2] Y. Sun, J.L. Zyskind, A.K. Srivastava, Average inversion level, modeling, and physics of erbium-doped fiber
amplifiers, J. Sel. Areas Quantum Electron. 3 (1997) 991-1007.

[3] Y. Sun, A.A.M. Saleh, J.L. Zyskind, D.L. Wilson, A.K. Srivastava, J.W. Sulhoff, Time dependent pertur-
bation theory and tones in cascaded erbium-doped fiber amplifier systems, |IEEE J. Lightwave Technol. 15
(1997) 1083-1087.

[4] A. Bononi, L.A. Rusch, Doped fiber amplifier dynamics: a system perspective, IEEE J. Lightwave Tech-
nol. 16 (1998) 945-956.

[5] C.-J. Chen, W.S. Wong, Transient effects in Raman optical amplifiers, in: Proc. OAA 2001, Stresa, Italy,
July, 2001, paper OMC2.

[6] M. Karasek, M. Menif, Channel addition/removal response in Raman fiber amplifiers: modeling and exper-
imentation, IEEE J. Lightwave Technol. 20 (2002) 1680-1687.

[7] S. Novak, R. Gieske, Simulink model for EDFA dynamics applied to gain modulation, IEEE J. Lightwave
Technol. 20 (2002) 986—992.

[8] Y. Sugaya, S. Muro, Y. Sato, E. Ishikawa, Suppression method of transient power response of Raman am-
plifier caused by channel add-drop, in: Proc. ECOC 2002, Vol. 2, Copenhagen, Denmark, September, 2002,
paper 5.2.3.

[9] S. Tarig, J.C. Palais, A computer model of non-dispersion-limited stimulated Raman scattering in optical
fiber multiple-channel communications, IEEE J. Lightwave Technol. 11 (1993) 1914-1924.

[10] D.N. Christoulides, R.B. Jander, Evolution of stimulated Raman crosstalk in wavelength division multi-
plexed systems, IEEE Photon. Technol. Lett. 8 (1996) 1722-1724.

[11] M.-S. Kao, J. Wu, Signal light amplification by stimulated Raman scattering iM-ahannel WDM optical
fiber communication system, IEEE J. Lightwave Technol. 7 (1989) 1290-1299.

[12] A. Bononi, M. Papararo, A. Vannucci, The impulsive pump depletion in saturated Raman amplifiers, |IEE
Electron. Lett. 37 (14) (2001) 886-887.

[13] C.R.S. Fludger, V. Handerek, R.J. Mears, Pump to signal RIN transfer in Raman fiber amplifiers, IEEE J.
Lightwave Technol. 19 (2001) 1140-1148.

[14] A. Bononi, L. Barbieri, Design of gain-clamped doped-fiber amplifiers for optimal dynamic performance,
IEEE J. Lightwave Technol. 17 (1999) 1229-1240.

[15] K.-P. Ho, Statistical properties of stimulated Raman crosstalk in WDM systems, IEEE J. Lightwave Tech-
nol. 18 (2000) 915-921.



A. Bononi et al. / Optical Fiber Technology 10 (2004) 91-123 123

[16] A. Bononi, C. Francia, G. Bellotti, Impulse response of cross-phase modulation filters in multi-span trans-
mission systems with dispersion compensation, Opt. Fiber Technol. 4 (1998) 371-383.

[17] M. Mehendale, A. Kobyakov, M. Vasilyev, S. Tsuda, Stimulated Brillouin scattering in Raman-amplified
dispersion compensating fibers, in: Proc. OFC 2002, Anaheim, CA, March, 2002, pp. 560-561.

[18] X. Zhou, C. Lu, P. Shum, T.H. Cheng, A simplified model and optimal design of a multiwavelength
backward-pumped fiber Raman amplifier, IEEE Photon. Technol. Lett. 13 (2001) 945-947.

[19] C.R.S. Fludger, V. Handerek, Ultra-wide bandwidth Raman amplifiers, in: Proc. OFC 2002, Anaheim, CA,
March, 2002, paper TuJ3, pp. 60-62.

[20] L. Gruner-Nielsen, Y. Qian, B. Palsdottir, P.B. Gaarde, S. Dyrbgl, T. Veng, Module for simultanepilis C
band dispersion compensation and Raman amplification, in: Proc. OFC 2002, Anaheim, CA, March, 2002,
paper TuJ6, pp. 65-66.

[21] L.F. Mollenauer, A.R. Grant, P.V. Mamyshev, Time-division multiplexing of pump wavelengths to achieve
ultrabroadband, flat, backward-pumped Raman gain, IEEE Opt. Lett. 27 (2002) 592-594.

[22] S.S.-H. Yam, F.-T. An, E.S.-T. Hu, M.E. Marhic, T. Sakamoto, L.G. Kazovsky, Gain-clamped S-band dis-
crete Raman amplifier, in: Proc. OFC 2002, Anaheim, CA, March, 2002, pp. 385-387.



